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Abstract
This paper presents an original guidance system able to confer a tactical behavior to multi-rotor unmanned aerial vehicles
(UAVs), such as quadcopters, that operate in potentially hostile, unknown, cluttered environments. By applying this guidance
system, UAVs complete the assigned tasks, such as reaching a goal set, while minimizing both their exposure to opponents,
whose location is unknown, and the predictability of their trajectories. A taxonomy of flight behaviors is provided to help
users tuning those parameters that characterize the UAV’s level of cautiousness. This guidance system is supported by an
original navigation system that exploits exclusively information gathered by onboard cameras and inertial measurement
units. Numerical simulations and flight tests validate the applicability of the proposed guidance system in real-time, while
performing all calculations aboard the UAV.

Keywords Path planning · Trajectory planning · Unmanned aerial vehicles · Tactical behavior

1 Introduction

This paper presents a tactical guidance system for multi-
rotor unmanned aerial vehicles (UAVs), such as quad-
copters, to be employed in missions wherein the aircraft
must minimize its exposure to opponents, whose loca-
tion is unknown. The proposed guidance system allows an
autonomous vehicle to reach a goal set, whose position
relative to the vehicle’s initial position is given, without
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any prior knowledge of the environment. Estimates on the
UAV’s state and a map of the environment are produced by
a navigation system that relies exclusively on onboard sen-
sors such as cameras, accelerometers, and gyroscopes. As
highlighted in [99], UAVs equipped with guidance systems
such as the one proposed in this paper could have been used
by law enforcement agencies during the tragic events on
October 1, 2017 in Las Vegas, NV, to aid situational aware-
ness, reduce personnel exposure, and surprise and distract
opponents.

The first element of novelty of the proposed guidance
system is its ability to instill a tunable tactical behavior in
autonomous vehicles operating in unknown environments.
To the authors’ knowledge, there is no guidance system
able to attain this result without any prior knowledge on the
presence of adversaries, if any. To instill a tactical behavior
in UAVs, our guidance system pursues concurrently two
common tactical strategies, which are inspired by the
behavior of house mice [35] and the tactics of ground
troops operating in potentially hostile environments [94].
The first of these strategies consists of flying sufficiently
close to obstacles such as walls, pillars, and other similar
environmental features [1]. Coasting obstacles minimizes
the vehicle’s exposure to sensors that acquire targets in
direct line-of-sight, such as cameras, LiDAR systems,
and RADARs. Furthermore, the obstacles’ hard surfaces
can distort the signal emitted by active sensors such as

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-021-01526-8&domain=pdf
http://orcid.org/0000-0001-5704-4088
mailto: a.lafflitto@vt.edu
mailto: mjulius@vt.edu
mailto: andersonb@vt.edu
mailto: wuc188@psu.edu
mailto: eric.johnson@psu.edu


   71 Page 2 of 36 J Intell Robot Syst          (2021) 103:71 

LiDARs and RADARs and hence, contribute to the UAV’s
concealment. The second strategy to induce a tactical
behavior is to regulate the UAV’s velocity according to its
distance from the obstacles’ set. For instance, if the UAV
is shielded by some obstacle, then it should proceed slowly
to allow the navigation system to produce a more accurate
obstacles’ map. Alternatively, if no obstacle conceals the
vehicle’s position, then the UAV should proceed as fast as
possible [1].

The second element of novelty of the proposed guidance
system lays in the possibility given to users to set a priori
the vehicle’s level of cautiousness or recklessness. This
level of cautiousness can be set by tuning nine user-defined
parameters, whose roles are discussed in detail.

The third element of novelty of this paper lays in a
taxonomy of flight behaviors. This classification of the
UAV’s behaviors is instrumental to predict the vehicle’s
behavior and, hence, enable users to tune those parame-
ters that characterize the UAV’s level of cautiousness. This
taxonomy of flight behaviors has been deduced through
software-in-the-loop simulations by varying one user-
defined parameter at the time, multiple user-defined param-
eters, the UAV’s initial conditions in a given environment,
and the occupancy map. This numerical analysis shows that
if these user-defined parameters are set to produce a more
tactical behavior, then small variations in the user-defined
parameters, the UAV’s take-off position, and the obstacles’
set produce reference trajectories that differ considerably
from the shortest trajectory. Therefore, by imposing a tac-
tical behavior, the UAV’s reference trajectories are less
predictable. Conversely, if these user-defined parameters are
set to produce a reckless behavior, then the UAV’s reference
trajectories are more predictable in the sense that small vari-
ations in the user-defined parameters, the UAV’s take-off
position, and the obstacles’ set produce reference trajec-
tories that cluster around the shortest trajectory. Multiple
flight tests verify the outcome of this numerical analysis.

Given a voxel map produced by the onboard navigation
system, the UAV’s reference path is computed as a sequence
of unoccupied voxels that minimizes a cost function. A
novel feature of the proposed guidance system lays in the
fact that this cost function has been designed to capture both
the UAV’s need to reach the goal set and its need to coast
the obstacles’ set to enable a tactical behavior. Reference
paths are searched at each time step by employing the A∗
search algorithm. Employing a fast model predictive control
approach, the aircraft reference trajectory is computed as the
solution of an optimal control problem, whose waypoints
are given by the vehicle’s reference path. Similarly to the
path planner, a cost function that captures the vehicle’s need
to reach the goal set and be sheltered from potential threats
by coasting obstacles underlies the trajectory planner. The
trajectory planning subsystem also allows to regulate the

aircraft’s velocity at each waypoint according to tactical
needs. The algorithm that enables fast solutions of the
trajectory planning problem within the model predictive
control framework recasts the trajectory planning problem
as a quadratic programming problem, whose underlying
matrices are in block-tridiagonal form. This quadratic
programming problem can be solved numerically by means
of state-of-the-art algorithms that exploit these matrices’
structure, fast computation of the Newton step, and an
infeasible start Newton method [100]. These algorithms
guarantee a time complexity that is polynomial in the
dimensions of the state vector and the number of constraint
equations, and is linear in the time horizon. The use of a
warm start contributes to reducing the number of iterations
by a factor of five or more [100].

Collision avoidance constraint sets are generated by
employing a novel approach, which can be synthesized as
follows. Given a voxel map of the environment, the pro-
posed collision avoidance algorithm solves a quadratic opti-
mization problem and computes ellipsoids that contain the
vehicle’s position and exclude the obstacles. Thus, convex
constraint sets, whose boundaries are captured by affine
functions, are generated by sampling these ellipsoids. The
boundaries of these constraint sets intersect the obstacles’
set at one or multiple points, and since coasting obstacles
is one of the strategies pursued to enable tactical behaviors,
searching for reference trajectories in some space adjacent
to the obstacles’ set is essential. This method to capture
collision avoidance constraints allows to generate real-time
solutions to the trajectory planning problem. Numerical
simulations show that the proposed approach to gener-
ate collision avoidance constraints is consistently faster
than two alternative, state-of-the-art algorithms for colli-
sion avoidance constraint generation, namely IRIS (Iterative
Regional Inflation by Semidefinite programming) [3, 24,
25] and SFC (Safe Flight Corridors) [53].

A typical approach to guarantee safety margins, while
enforcing collision avoidance constraints, is to introduce
offsets of user-defined size or inflate the occupied voxels.
However, the presence of large offsets may contrast with the
strategy of coasting obstacles to produce a tactical behavior.
Moreover, these techniques may prevent the UAV from
traversing narrow passages. In this paper, to discourage
the UAV’s reference trajectory from approaching the
boundary of its constraint set too closely, a Kreisselmeier-
Steinhauser penalty function is employed to introduce soft
constraints [43]. This penalty function does not disrupt
the computationally efficient sparse pattern of the Hessian
matrix underlying the proposed quadratic programming
problem [77, 104].

Classical approaches to solve the model predictive con-
trol problem as a quadratic programming problem involve
matrices that are more compact than those employed in this
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paper, but whose structure is less computationally efficient
[16, 55]. Among alternative approaches to efficiently solve
online the trajectory planning problem as a quadratic pro-
gramming algorithm it is worthwhile to recall [8, 41, 79, 80,
105], which leverage the sparsity of the underlying matrices
and exploit active-set methods, interior-point methods, or
the dual piecewise smooth Newton method. However, none
of these works employ matrices structured in the same form
as those presented in this paper.

In this paper, we compare the performance of the pro-
posed guidance system with the performance of the MAV
Voxblox planner [68, 69]. The MAV Voxblox planner is
a state-of-the-art guidance system that, similarly to the
proposed guidance system, comprises both an optimization-
based path planner and a trajectory planner based on the
model predictive control framework. This analysis is not
aimed at assessing the ability of MAV Voxblox to pro-
duce tactical reference trajectories, since it is not designed
for this scope. The scope of this analysis is to showcase
the ability of the proposed guidance system to effectively
outline reference trajectories in unknown environments
over advanced algorithms employing a similar architecture.
Numerical simulations performed in an unknown maze pro-
vided by [68], show that the MAV Voxblox required several
attempts to traverse the densely occupied areas. The pro-
posed guidance system did not require multiple attempts to
find a solution to the trajectory planning problem both when
tasked with finding reckless trajectories and when tasked
with finding tactical trajectories. Furthermore, the MAV
Voxblox produced reference trajectories that are longer than
the reckless reference trajectories and the tactical reference
trajectories produced by the proposed guidance system.
However, reducing the flight time and the distance cov-
ered, compatibly with the mission constraints, is a desirable
feature.

This paper is organized as follows. In Section 2, we present
a literature review on guidance systems for tactical UAVs,
and highlight key features of the proposed architecture
by surveying multiple path planning, optimal trajectory
planning, and collision avoidance techniques from a tactical
mission planning perspective. In Section 3, the notation
used in this paper is outlined. The proposed guidance
system, the vision based navigation system generating the
voxel map, and their integration are discussed in Sections 4,
5, and 6, respectively. The results of software-in-the-
loop simulations to validate the proposed guidance system
and deduce a taxonomy of flight behaviors are presented
in Section 7. Section 8 illustrates the results of indoor
flight tests, and prove that software-in-the-loop simulation
are useful to predict average behaviors of the proposed
guidance system. Section 9 compares the performance of
the proposed guidance system and MAV Voxblox. Finally,
Section 10 draws conclusions on this work.

2 Literature Review and Relevance
of the Proposed Guidance System

In this section, we survey existing guidance systems for tac-
tical UAVs and highlight distinctive features of the proposed
guidance system. Successively, we examine some popular
path planning and optimization-based trajectory planning
techniques for UAVs and discuss their applicability to guid-
ance systems for tactical UAVs. Finally, we review state-of-
the-art techniques currently employed in trajectory planning
for UAVs to generate collision-free constraint sets and dis-
cuss the relevance of the proposed algorithm to solve this
problem in real-time.

2.1 Guidance Systems for Tactical UAVs

The literature on guidance systems for UAVs moving along
a collision-free path of low exposure to observers, also
known as autonomous tactical UAVs, is relatively under-
explored. To the authors’ knowledge, there is no guidance
system that, similarly to the one proposed herein, comprises
both a path planner and a trajectory planner, allows the
user to set a priori the UAV’s level of cautiousness or
recklessness, relies on onboard sensors only, and is able to
operate without prior knowledge of the environment and the
opponents’ location.

Recently, a guidance system for stealthy UAVs was pre-
sented in [110], where sparse A∗, D∗, and learning real-time
A∗ are employed as path planners, and their performances
are compared to one another. However, despite the pro-
posed guidance system, the authors in [110] assume to
know that the opponents detect UAVs by employing net-
ted RADARs. Additionally, the guidance system proposed
in [110] employs a classical, but not fast, model predic-
tive control algorithm for trajectory planning and does not
exploit the obstacles’ set to conceal the UAV from RADARs
Additionally, this work does not account for the UAV’s navi-
gation system, and results are not verified by means of flight
tests.

An alternative guidance system for UAVs attempting
to reach a given location and minimize their exposure to
RADAR systems is presented in [17]. However, the authors
of this work assume exact knowledge of the RADAR’s posi-
tion. Furthermore, reference paths were computed as solu-
tions of a mixed integer linear programming problem, and
this approach is unsuitable in real-time and for large number
of constraints and variables needed for realistic mission sce-
narios. Lastly, mixed integer linear programming is sensitive
to uncertainties in the underlying models [20, 75].

To induce a stealthy behavior in UAVs, the authors
of [28] produced corridor maps by computing visibility
polygons that describe the field of view of the observers.
Thus, the A∗ algorithm was exploited to generate safe
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reference paths. Very recently, a method for tracking a
ground vehicle from a UAV with a low risk of being
detected was developed in [33]. Finally, the authors of [58]
introduced a two-dimensional guidance system for covert
autonomous robots that quantifies the robot’s visibility at
each obstacle-free partition of a map, and generates a
collision-free path that minimizes visibility. The results in
[28, 33, 58], however, rely on a priori information about
the environment, and do not explicitly consider the cases
wherein the vehicle is in an unexplored area.

Moving at the highest speed possible is a technique
employed by some prey animals to escape their predators
[113], and multiple guidance systems have been recently
designed to allow UAVs to operate at high speed in
unknown, cluttered environments. Among these works, it is
worthwhile recalling [29, 48, 50, 78, 85, 86, 89, 92, 111,
112] to cite a few of the latest results in this area. However,
relying only on speed as a tactical strategy to win a pursuit-
evasion game can be effective if sufficient conditions on
the agents’ initial conditions and relative velocity, such
as those presented in [34, 87, 88], are met. Additionally,
the speed of any commonly used ammunition and the
accuracy of existing automatic pointing systems render
tactical approaches for UAVs based only on speed largely
ineffective. Lastly, speed is not an effective strategy in
the case the UAV must be concealed from electromagnetic
sensors such as cameras, RADARs, and LiDARs.

2.2 Guidance Systems for UAVs Based on Path
and Trajectory Planners

As discussed in [78], guidance systems for UAVs often
embed both a path planner and a trajectory planner. The
path planner is usually tasked with finding a collision-free
sequence of waypoints that connect the vehicle’s current
location to the goal set. Path planners rarely account
for the UAV’s dynamics and hence, path following may
result in a dynamically infeasible problem. In quadcopters,
propellers are parallel to the vehicle’s yaw axis and hence,
the thrust force needed to translate the aircraft must be
realized by pitching and rolling the vehicle. To overcome
this limitation, the trajectory planner is usually tasked with
computing a dynamically feasible time-parameterized curve
that interpolates these waypoints. However, computing
reference trajectories that interpolate all of the waypoints
outlined by the path planer may be impossible for existing
trajectory planners in problems of practical interest. For
instance, optimization-based trajectory planners usually
operate on convex sets since convexity of the underlying
cost function over some convex set guarantees the existence
of at least a solution. However, there may not exist a convex
set that contains both the UAV’s current position and all

waypoints, and excludes all obstacles. For these reasons, in
general, the trajectory planning problem is solved locally
by interpolating multiple waypoints generated by the path
planner.

A guidance system for quadcopters that, similarly to the
one presented in this paper, is based on a path planner
and a trajectory planner, was proposed in [24, 30, 53, 54].
Although this guidance system was not designed to support
tactical missions, it is worthwhile discussing some of its
main differences with the proposed work. The authors in
[24, 30, 53, 54] proposed a path planner based on both
the A∗ algorithm and the jump point search algorithm
to prune voxel elements. However, the rules to prune
voxel elements may prevent the UAV from coasting the
obstacles’ set. Furthermore, their cost-to-come function
does not allow rewarding paths coasting the obstacles’ set
more closely. Therefore, this framework is unsuitable for
tactical missions. The trajectory planner presented in [24,
30, 53, 54] employs a linear receding horizon algorithm to
control the output-feedback linearized equations of motion
of the UAV, which is useful if aggressive maneuvers need
to be performed, and the vehicle’s inertial and aerodynamic
properties are sufficiently well-known. In this paper,
instead, we employ the linearized equations of motion
deduced by applying Taylor’s theorem since the UAV is
not tasked to perform aggressive maneuvers. However, the
proposed framework can be employed to control the output-
feedback linearized equations of motion of the quadcopter.
In [53], collision avoidance constraints are captured as
hard constraints by polyhedral sets, which are computed
from ellipsoids that exclude the obstacles’ set along the
reference path. The proposed algorithm to compute collision
avoidance constraints involves a single ellipsoid and can be
solved as a linear program using interior point methods.
Furthermore, applying the framework presented in [24, 30,
53, 54], the risk of collisions with the obstacles’ set can be
mitigated by introducing constant offsets to enforce user-
defined safety margins. However, this approach does not
prevent sudden increases in the control effort due to the
activation of the shifted hard constraints [9, Ch. 4]. In this
paper, we rely on the Kreisselmeier-Steinhauser function
[43], and not constant offsets defined a priori, to introduce
soft constraints and discourage the UAV’s trajectory from
coasting obstacles too closely. In addition to the advantage
of allowing user-defined safety margins, soft constraints
also prevent sudden increases in the control effort associated
with the constraints’ activation.

Some recent guidance systems based on both path and
trajectory planners are presented in [21, 62, 67, 69, 71, 82],
to cite a few. In the following, we survey several path and
trajectory planners for UAVs and discuss their possible use
for the design of guidance systems for tactical UAVs.
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2.3 Path Planning for Autonomous UAVs

The A∗ framework has been chosen to support the proposed
path planning algorithm for its ability to generate paths that
are optimal with respect to a user-defined cost function, for
its fast convergence, and for its low time complexity [51].
For these appealing features, this approach has been already
employed by other researchers, such as [23, 73, 98] to
name a few. However, to the authors’ knowledge there is no
tactical path planning algorithm based on A∗. To motivate
our choice for the path planning algorithm, in the following
we briefly survey multiple approaches to the path planning
problem for UAVs.

The probabilistic roadmap method [12, 56] provides
an advantageous path planning technique because it is
sampling-based. Furthermore, this method guarantees low
processing time in high-dimensional problems by ignoring
points in the obstacle region. However, the probabilistic
roadmap is not based on optimization criteria [56] and
hence, can not be employed in tactical path planning to
assess the risk associated with each feasible path. Similarly,
the rapidly exploring random tree method (RRT) and
its numerous variations [42, 66] provide computationally
advantageous approaches. However, RRT may suffer from
biases produced by the random nodes’ generator [66].

Search algorithms based on the use of Voronoi diagrams
[18, 22], while easy to implement, are inefficient in high
dimensions, and require complex data structures and long
pre-processing times [64]. Furthermore, Voronoi diagrams
inherently find paths of maximum distance from obstacles
[59], and, in general, this behavior produces non-tactical
paths.

Some bio-inspired algorithms [70, 107, 108], such as
evolutionary algorithms, allow to solve non-deterministic
polynomial-time-hard (NP-hard) multi-objective path plan-
ning problems, but suffer from high time complexity. Alter-
native bio-inspired path planning algorithms, such as those
based on neural networks, require training with given data
[84] and hence, may not be suitable for mission sce-
narios involving complex, unknown environments. Lastly,
the computational cost of bio-inspired path planners still
hinders real-time path planning on small UAVs in three-
dimensional environments [81, 106].

Mixed integer linear programming [7] and disjunctive
convex programming [11] allow to find reference paths in
the presence of multiple collision avoidance constraint sets.
However, the computational times of these techniques are
in the orders of tens of seconds in the presence of large
numbers of obstacles [11], and hence, may not be suitable
to design path planners for tactical UAVs.

The D∗ and the D∗-lite algorithms [39, 40] provide
appealing alternatives to A∗ for their speed of execution

and good performance in the presence of rapidly changing
obstacles’ sets. Future work directions of the proposed
path planning algorithm involve the use of the D∗-lite
framework.

2.4 Optimal Trajectory Planning for Autonomous
UAVs

In this paper, a fast, linear model predictive control frame-
work has been chosen to compute reference trajectories for
its ability to rapidly generate trajectories that are dynami-
cally feasible and optimal with respect to some user-defined
cost function. To motivate our choice for the trajectory plan-
ning algorithm, in the following we briefly survey multiple
approaches to the trajectory planning problem for UAVs.

Direct and indirect multiple shooting methods [76], direct
and indirect transcription methods [38, 95], and level set
methods [45, 83] have been employed to compute reference
trajectories as solutions of optimal control problems. These
methods, however, are computationally expensive and, con-
sidering the state-of-the-art of single board computers for
Class I UAVs, are slow in producing reference trajectories
and reference yaw angles in complex scenarios.

The optimal trajectory planning problem has been
addressed by means of the receding horizon [74] and the
model predictive control techniques [44]. Earlier implemen-
tations of model predictive control and receding horizon
control were applicable to slow processes only due to
their high computational costs [44, Ch. 1]. However, recent
advances, such as those exploited in this paper, produce
fast solutions to linear-quadratic optimal control problems
[14, 77]. Recently, dynamically feasible collision-free tra-
jectories in the receding horizon control framework have
been produced using an innovative B-spline and a nonuni-
form kinodynamic search algorithm with control point
optimization based on quadratically constrained quadratic
programming [90].

More recently, trajectory planning methods based on non-
linear-nonquadratic model predictive control approaches
have been proposed [2]. However, if a multi-rotor UAV
needs to perform aggressive maneuvers, then the use of
nonlinear model predictive control algorithms is compu-
tationally justified by the high-precision of the resulting
reference trajectories [37]. In this paper, a tactical behavior
is not induced by performing aggressive maneuvers but, by
enabling more cautious strategies.

A very recent approach to optimal trajectory planning for
UAVs operating in spaces densely packed with obstacles has
been proposed in [102]. According to this approach, first the
free boundary conditions are optimized while holding the
UAV’s travel time fixed, and then the UAV’s travel time is
optimized while holding the boundary conditions fixed.
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2.5 Computing Convex Collision-Free Constraint Sets

In the proposed trajectory planning subsystem, collision
avoidance is enforced by searching convex spaces, which
do not intersect the obstacles’ set and whose boundaries
are piece-wise affine. These convex sets are obtained by
sampling ellipsoids computed as solutions of a quadratic
discrimination problem. Alternative approaches are given
by IRIS [3, 24, 25] and SFC [53].

Assuming that the point cloud generated by the UAV’s
navigation system to identify obstacles has been partitioned
into multiple convex obstacles, the IRIS algorithm has
been designed for quickly computing large polytopic and
ellipsoidal regions of obstacle-free space around a UAV
through a series of convex optimizations. Although both the
algorithm presented in this paper and IRIS rely on ellipsoids
to identify collision-free partitions of the environment, our
algorithm does not require to identify convex clusters of
obstacle points. Furthermore, a key step in IRIS is to
identify those obstacle points that are closest to an ellipsoid
containing the UAV. This computationally onerous step is
not required by the proposed algorithm. Finally, as shown
by means of a numerical analysis, the proposed algorithm
is faster than IRIS in computing convex obstacle-free sets
containing the UAV.

The SFC algorithm [53] computes collections of convex
overlapping polyhedra that model free space and contain
some path connecting the UAV’s current position to the
goal position. More recently, the SFC algorithm has been
extended to trajectory planning on Riemannian manifolds
and has been applied to the UAV trajectory planning
problem [103]. As shown by means of numerical analysis,
the proposed algorithm to compute convex constraint sets
for collision avoidance is faster than the SFC algorithm.

3 Notation, Definitions, andMathematical
Preliminaries

The interior of the set E ⊂ R
n is denoted by E̊ , the boundary

of E ⊂ R
n is denoted by ∂E , and the closure of E is denoted

by E . The ith element of the canonical basis of R
n is

denoted by ei,n � [0, . . . , 1, . . . , 0]T, the zero vector in R
n

is denoted by 0n, the zero n × m matrix in R
n×m is denoted

by 0n×m, and the identity matrix in R
n×n is denoted by 1n.

The diagonal matrix D ∈ R
n×n, whose diagonal entries are

given by {k1, . . . , kn}, is denoted by D = diag(k1, . . . , kn).
The block-diagonal matrix formed by Mi ∈ R

ni×ni , i =
1, . . . , p, is denoted by M = blockdiag

(
M1, . . . , Mp

)
. The

Kronecker product of A ∈ R
n×m and B ∈ R

p×q is denoted
by A ⊗ B [10, Def. 7.1.2].

Given x, y ∈ R
n, if each component of x is larger than

the corresponding component of y, then we write x >> y.

If each component of x is not smaller than the corresponding
component of y, then we write x ≥≥ y. If each component
of x is smaller than the corresponding component of y, then
we write x << y. If each component of x is not larger than
the corresponding component of y, then we write y ≤≤ x.
If the symmetric matrix P ∈ R

n×n is positive-definite,
positive-semidefinite, negative-semidefinite, or negative-
definite, then we write P > 0n×n, P ≥ 0n×n, P ≤ 0n×n,
and P < 0n×n, respectively. Furthermore, if both P ∈ R

n×n

and Q ∈ R
n×n are symmetric and (P − Q) > 0n×n,

(P − Q) ≥ 0n×n, (P − Q) ≤ 0n×n, and (P − Q) < 0n×n,
then we write P > Q, P ≥ Q, P ≤ Q, and P < Q,
respectively.

The natural logarithm of x > 0 is denoted by log(x), and
the saturation function sat : R → [−1, 1] is defined so that
if x ∈ [−1, 1], then sat (x) = x, if x > 1, then sat (x) = 1,
and if x < −1, then sat (x) = −1.

The proposed guidance algorithm allows to generate
reference trajectories for a UAV, whose degree of cautious-
ness can be imposed by tuning the user-defined parameters
μq ∈ R, q ∈ {1, . . . , 9}. Additional user-defined param-
eters, which do not affect directly the UAV’s degree of
cautiousness, are denoted by νs ∈ R, s ∈ {1, . . . , 4}.

4 Guidance System’s Architecture

In the following, we describe in detail both the path planning
and the trajectory planning subsystems underlying the
proposed tactical guidance system.

4.1 Tactical Path Planning Subsystem

Consider the orthonormal inertial reference frame I �
{O; X, Y, Z} centered at O and with axes X, Y, Z ∈
R

3. The path planning algorithm underlying the proposed
guidance system generates the UAV’s reference path, a
sequence of waypoints {r̂k}np

k=0 ⊂ R
3 \ O for the UAV

expressed in the reference frame I, where r̂0 denotes the
UAV’s position at the beginning of each iteration of the path
planning algorithm, r̂np denotes a point of the goal set G,
and O ⊂ R

3 denotes the obstacles’ set. The obstacles’ set
O is given by the union of those voxels in the occupancy
map produced by the navigation system, whose probability
of being occupied is larger than a user-defined threshold
value. The integer k ∈ {0, . . . , np} is solely employed as an
index to denote a generic waypoint and to express functional
dependencies on waypoints.

The UAV’s reference path is generated as the solution
of an optimization problem by applying the A∗ algorithm
[49, App. C]. Specifically, assuming that the occupancy map
is partitioned into cubic voxels, and assuming that the UAV
is able to move to any unoccupied voxel that surrounds the
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one currently occupied by the aircraft, the UAV’s reference
path is given by a sequence of adjacent voxels that connects
the UAV’s initial position to the goal set G and minimizes a
user-defined cost function.

The cost function underlying the path planning algorithm
is given by

fk � gk + hk, (1)

where

gk �
k∑

q=1

[
κ(d2(r̂q ,O))d2(r̂q , r̂q−1)

]
(2)

denotes the cost-to-come function,

hk � (1 − μ2)d2(r̂k,G) (3)

denotes the heuristic function,

κ(α) � 1 − μ2e
4μ1μ3−

[
μ3α+μ1α

−1
]2

, α > 0, (4)

denotes the weighing function, and μ1, μ3 > 0 and μ2 ∈
[0, 1) are user-defined parameters. In practice, Eq. 1 is the
sum of the weighted distance traveled by the UAV, namely
Eq. 2, and an under-estimate of the Euclidean distance
between the voxel occupied by the UAV and the goal set,
namely Eq. 3. The role of the weighing function κ(·) in Eq. 2
is to encourage tactical behaviors by rewarding paths that
are closer to O. If a tactical behavior is desired, then the A∗
algorithm is encouraged to search reference paths {r̂k}np

k=0
that reach the goal set G among unoccupied voxels that are
closer to the obstacles’ set O.

As illustrated by Fig. 1, κ(·) is such that minα∈R κ(α) =
1 − μ2. Thus, it follows from Eq. 2 that for smaller values
of μ2, the attractive effect of the obstacles’ set is less
enhanced, and the UAV exhibits a more reckless behavior.
Since 1−μ2 scales the distance between the UAV’s position

and the goal set G in Eq. 3, and κ(α) ≥ 1 − μ2 for all
α > 0, it follows from the triangle inequality that the
heuristic function hk is both admissible and consistent and
hence, the proposed path planning subsystem guarantees
optimality of the reference path and does not search voxels
that were already visited in previous iterations of the A∗
algorithm. Moreover, for smaller values of μ2, the proposed
search algorithm investigates a smaller number of voxels
and hence, is faster.

The weighing function κ(·) is such that κ(α) ∈ (0, 1],
α > 0, limα→0+ κ(α) = 1, and limα→∞ κ(α) = 1. Thus,
if the UAV occupies a cell that is either arbitrarily close
or arbitrarily far from the obstacles’ set, then the weighing
function tends to unity, and the cost-to-come function
reduces to the cost-to-come function employed in classical
A∗-based path planning algorithms. This property of κ(·)
allows the user to impose that the UAV’s reference path
does not coast the obstacles’ set too closely, and reduces the
attraction exerted by those subsets of O that are arbitrarily
far from the goal set G.

We also note that arg minα>0 κ(α) =
√

μ1μ
−1
3 , and κ(·)

is twice continuously differentiable and strictly convex for
all α ∈ I̊, where I � {α > 0 : κ̈(α) ≥ 0}; an expression
of κ̈(·) is omitted for brevity. Thus, the boundaries of the
compact set I are given by the two inflection points of
κ(·) on (0, ∞), namely αmin, αmax ∈ ∂I. Furthermore, the
diameter of I, that is, |αmax − αmin|, is finite and increases

by decreasing μ3. Therefore, for smaller values of
√

μ1μ
−1
3

and for larger values of μ3, the proposed search algorithm
produces reference paths that are closer to the obstacles’
set O and hence, more cautious. In practice, the diameter
of I and the minimizer of κ(·) on (0, ∞) are measures of
the extent of the region of influence of the obstacles’ set
O on the UAV’s reference path. The role of μ1, μ2, μ3

Fig. 1 Plot of the weighing
function κ(·) for μ2 = 0.3 and
multiple values of μ1, and μ3.
Since both μ2 and μ1/μ3 are
constant, all curves share both
the same minimum and the same
minimizer. The inflection points
of each curve are marked by a
circle. The distance between the
two inflection points of the
scaling function is finite and
increases by decreasing the
user-defined parameter μ3

0 1 2 3 4 5 6
0.7
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and recommendations for their tuning to obtain reckless or
tactical behaviors are summarized in Table 1.

Collision avoidance is enforced by the underlying A∗
algorithm. Pathological cases, wherein both the goal set and
the obstacles’ set attract the UAV in equal manner, and the
aircraft is unable to reach G can not occur. Indeed, the cost
function (1) is positive, and the weighing function (4) does
not depend on the UAV’s distance from the goal set.

To illustrate the applicability of the proposed path
planner for tactical UAVs, two sets of numerical simulations
have been performed considering multiple values of the
user-defined parameter μ2, while setting μ1 = μ3 = 0.20.
The outcomes of these simulations are shown in Fig. 2.
The voxel map represented in Fig. 2 captures both a high-
bay area, where the quadcopter takes off, and some office
space, where the quadcopter is tasked to land; this voxel
map has been obtained by employing the same vision-
based navigation system as for the flight tests presented in
Section 8 below. Table 2 shows both the lengths and average
distances of the reference paths from the obstacles’ set.
As it appears from Fig. 2 and Table 2, and as anticipated
in Table 1, larger values of the user-defined parameter μ2

produce reference trajectories that are longer and closer to
the obstacles’ set, and hence, more tactical.

4.2 Tactical Trajectory Planning Subsystem

4.2.1 Overview

The path planning algorithm outlined in Section 4.1 does
not account for the UAV’s dynamics, does not parameterize
the reference path as a function of time, and can not enable
tactical strategies that require regulating the UAV’s velocity.
To overcome these limitations, reference trajectories are
computed as solutions of an optimal control problem solved
numerically by means of a fast model predictive control
algorithm, for which the reference path serves as a sequence
of waypoints to interpolate.

This section is organized as follows. Section 4.2.2 presents
the notation used to describe the proposed trajectory
planning system. Section 4.2.3 describes in detail the cost
function proposed to instill a tactical behavior in the UAV by

coasting the obstacles’ set. Section 4.2.4 presents the UAV’s
dynamical model and discusses how the UAV’s velocity at
each waypoint can be chosen to enable tactical behaviors.
Section 4.2.5 presents how constraints on the UAV’s
yaw angle, constraints on the controllers’ saturation, and
collision avoidance constraints can be captured by convex
constraint sets. Section 4.2.6 shows how the structure of
the given optimal control problem can be exploited to
compute fast numerical solutions according to the model
predictive control methodology. Finally, Section 4.2.7
shows how soft constraints can be introduced to anticipate
hard constraints without disrupting the block-tridiagonal
structure of the matrices underlying the proposed trajectory
planning system.

4.2.2 Notation

Time is denoted by t ∈ R, and we assume that the UAV
is able to fly from r̂k , k ∈ {0, . . . , np − 1}, to r̂k+1 in
ntΔT time units, where both nt ∈ N and ΔT > 0 are
user-defined. In general, both nt and ΔT are different for
each pair of consecutive waypoints. However, the functional
dependency of these quantities on k is omitted for simplicity
of exposition.

The UAV’s position is captured by rk : [0, ntΔT ] →
R

3 \ O in the inertial reference frame I, where rk(0) = r̂k
and rk(ntΔT ) = r̂k+1. Employing a 3-2-1 rotation sequence
of intrinsic Tait-Bryan angles [46, Ch. 1], the UAV’s roll
angle is denoted by φk : [0, ntΔT ] → [0, 2π), the UAV’s
pitch angle is denoted by θk : [0, ntΔT ] → (−π

2 , π
2

)
,

the UAV’s yaw angle is denoted by ψk : [0, ntΔT ] →
[0, 2π), the UAV’s velocity with respect to I is denoted by
vk : [0, ntΔT ] → R

3, and the UAV’s angular velocity with
respect to I is denoted by ωk : [0, ntΔT ] → R

3. The total
thrust force produced by the UAV’s propellers is denoted by
u1,k(·), the roll moment produced by the UAV’s propellers
is denoted by u2,k(·), the pitch moment produced by the
UAV’s propellers is denoted by u3,k(·), and the yaw moment
produced by the UAV’s propellers is denoted by u4,k(·).

The UAV’s trajectory planning algorithm gener-
ates the UAV’s reference state vector xk(jΔT ) �[
rT
k (jΔT ), φ(jΔT ), θ(jΔT ), ψ(jΔT ), vT

k (jΔT ),

Table 1 Summary of the user-defined parameters of the proposed path planning system, and recommended values to instill reckless or tactical
behaviors

Parameter Description Reckless domain Tactical domain Equation number

μ1 Varies the position of both the left inflection point
and the minimum of κ(·)

(1, ∞) (0, 1] Eq. 4

μ2 Varies both the weight of the heuristic function hk

and the minimum of κ(·)
[0, 0.5] (0.5, 1) Eq. 3, Eq. 4

μ3 Varies the position of both the right inflection
point and the minimum of of κ(·)

(0.7, ∞) (0, 0.7] Eq. 4
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Fig. 2 Reference paths obtained
by finding minimizers of the
cost function (1) through a
numerical simulation. These
paths have been generated by
setting μ1 = μ3 = 0.20 in Eq. 4
and varying μ2. The voxel map
captures a high-bay area, where
the quadcopter takes off, and
some office space, where the
quadcopter is tasked to land.
Larger values of μ2 ∈ [0, 1)

induce a more cautious behavior
by coasting the obstacles’ set
more closely. If μ2 = 0.00, then
the UAV follows a reckless path
by traversing an open space in
the high-bay area

ωT
k (jΔT )

]T
, j ∈ {i, . . . , nt}, i ∈ {0, . . . , nt}, and the

corresponding control input uk(jΔT ) � [u1,k(jΔT ), u2,k

(jΔT ), u3,k(jΔT ), u4,k(jΔT )] ∈ R
4. In particular the pair

(xk(·), uk(·)), is calculated applying the model predictive
control algorithm and hence, is recomputed at each time
step jΔT , starting from current time step iΔT . The integer
i ∈ {0, . . . , nt} is solely employed to count iterations of the
model predictive control algorithm for a given pair of way-
points, and j ∈ {i, . . . , nt} is solely employed to indicate
the time step jΔT within the interval [iΔT , ntΔT ].

4.2.3 Cost Function Definition

In this paper, the need to outline tactical reference trajecto-
ries for UAVs by coasting the obstacles’ set is captured by
the cost function

J̃ [r̂k, uk(·)]��f(r̃k(ntΔT ))+
nt−1∑

i=0

�̃(rk(iΔT ), uk(iΔT )), (5)

Table 2 Length of the reference paths shown in Fig. 2 and their
average distance from the obstacles’ set O

μ2 Path length Average distance from O

0.00 18.54m 2.83m

0.20 19.08m 2.50m

0.30 23.46m 2.29m

0.75 27.26m 1.61m

Smaller values of μ2 produce shorter reference paths that, on average,
are further from the obstacles’ set and hence, less cautious

where

�̃(r̃k, uk) �
[
r̃k
uk

]T

R̃

[
r̃k
uk

]
+ q̃T

r r̃k + q̃T
u uk, (6)

�f(rk) �
(
rk − r̂k+1

)T
Rr,f

(
rk − r̂k+1

)

+qT
r,f

(
rk − r̂k+1

)
, (7)

R̃ �
[

R̃r R̃r,u

R̃T
r,u Ru

]
, R̃r ∈ R

3×3 is symmetric, R̃r,u ∈ R
3×4,

and Ru ∈ R
4×4 are user-defined and such that Ru is

positive-definite and

R̃r − 2R̃T
r,uR

−1
u R̃r,u > 0, (8)

Rr,f ∈ R
3×3 is symmetric and positive-semidefinite, q̃r ∈

R
3, qr,f ∈ R

3, and q̃u ∈ R
4 are user-defined,

r̃k(iΔT ) � μ4
[
rk(iΔT ) − r̂k+1

] + (1 − μ4)

×fsat
(
μ5(r̂k − rO)

)
[rk(iΔT ) − rO] , (9)

μ4 ∈ (0, 1] and μ5 > 0 are user-defined, fsat(w) �
sat (‖w‖)

‖w‖ , w ∈ R
n, and rO � d2(r̂k,O). It is worthwhile to

note that fsat(w) is such that fsat(w) → 1 as ‖w‖ → 0. Fur-
thermore, it follows from Eq. 8 and the Schur complement
condition on the positive-definiteness of block-matrices
[13, pp. 7-8] that R̃ is symmetric and positive-definite.

The cost function (5) captures the objectives of reaching
the next waypoint, namely r̂k+1, and, if a tactical behavior
is desired, coasting the obstacles’ set O. Specifically, the



   71 Page 10 of 36 J Intell Robot Syst          (2021) 103:71 

Mayer’s term (7) captures the UAV’s need to reach r̂k+1

from the current position rk; the weighting terms in Eq. 7
are denoted by the subscript f. The first term on the right-
hand side of Eq. 9 captures the UAV’s distance from the
next waypoint, and the second term on the right-hand side
of Eq. 9 captures the UAV’s distance from the obstacles’
set O. Therefore, the Lagrangian function (6) captures the
UAV’s competing needs of reaching the next waypoint and
coasting the obstacles’ set.

By setting μ4 = 1, it follows from Eq. 9 that minimizing
(5) induces a reckless behavior, since the UAV’s sole goal is
to reach the next waypoint, whereas decreasing μ4 induces
a more tactical behavior since coasting the obstacles’ set
becomes a higher priority. Since fsat(μ5w) = 1 for all
w ∈ R

n such that ‖w‖ ≤ μ−1
5 , fsat(μ5w) < 1 for all

w such that ‖w‖ > μ−1
5 , and lim‖w‖→∞ fsat(μ5w) = 0,

the function fsat(·) in Eq. 9 reduces the attractive effect of
obstacles at a distance from the waypoint r̂k that is larger
than μ−1

5 . Therefore, smaller values of μ5 induce a more
tactical behavior.

The user-defined matrix Rr,f in Eq. 7 weighs the relative
importance of minimizing some components of

(
rk − r̂k+1

)

over others. For instance, if Rr,f is diagonal and the first
two diagonal elements are larger than the third one, then
reaching the same altitude as the waypoint r̂k+1 is less
relevant than reaching the same location as r̂k+1 in the
horizontal plane. The user-defined vector qr,f in Eq. 7 can
be designed to instill a desired behavior. For instance, by
setting qr,f = r̂k−r̂k+1

‖r̂k−r̂k+1‖2 the UAV will be less attracted

by r̂k+1 as this waypoint is being approached, and this
behavior will allow the onboard navigation system more
time to detect new features of the environment. The user-
defined matrix R̃ in Eq. 6 weighs the relative importance of
minimizing some components of the state vector r̃k over
some components of the control input uk . The user-defined
vectors qr and qu in Eq. 6 can be designed to instill a desired
behavior. For instance, by setting q̃r = [0, 0, 1]T, the UAV
will be further drawn toward the ground or the ceiling of an
indoor space, which can be considered as tactical behaviors
since detection devices are usually employed to point
toward open passages, and not impenetrable features such
as walls or floors. Similarly, by setting q̃u = [1, 0, 0, 0]T,
variations in the first element of uk , namely the thrust force
produced by all propellers, are penalized.

Next, we recast (5) as an explicit function of both the
UAV’s position rk(·) and the control input uk(·). To this
goal, substituting (9) in Eq. 6, we note that minimizing (5)
is equivalent to minimizing

�f(rk(ntΔT )) +
nt−1∑

i=0

�(rk(iΔT ), uk(iΔT )), (10)

where

�(rk, uk) �
[
rk
uk

]T

Rk

[
rk
uk

]
+ qT

r,krk + qT
u,kuk, (11)

Rk �
[

Rr,k Rr,u,k

RT
r,u,k Ru

]
, (12)

Rr,k �
[
1 + μ4(1 − fsat

(
μ5(r̂k − rO))

)]
R̃r , (13)

Rr,u,k �
[
1 + μ4(1 − fsat

(
μ5(r̂k − rO))

)]
R̃r,u, (14)

qr,k �
[
1 + μ4(1 − fsat

(
μ5(r̂k − rO))

)]

·
[
q̃r − 2R̃r

(
μ4r̂k+1 + (1 − μ4)

fsat × (
μ5(r̂k − rO)

)
rO

) ]
, (15)

qu,k � q̃u − 2R̃T
r,u

[
μ4r̂k+1 + (1 − μ4)

fsat × (
μ5(r̂k − rO)

)
rO

]
. (16)

Note that since fsat
(
μ5(r̂k − rO)

) ∈ (0, 1], it follows from
Eq. 8 and the Schur complement condition on the positive-
definiteness of block-matrices [13, pp. 7-8] that Rk is positive-
definite. Since the proposed trajectory planning system
employs a model predictive control framework to minimize
(10), the UAV’s reference trajectories and the corresponding
control inputs are computed iteratively at each time step
over the discrete time horizon {iΔT , . . . , ntΔT }, i ∈
{0, . . . , nt − 1}, as minimizers of the cost function

J [r̂k, uk(·)] � �f(rk(ntΔT )) +
nt−1∑

j=i

�(rk(jΔT ),

uk(jΔT )). (17)

4.2.4 Dynamic Constraints

Let g > 0 denote the gravitational acceleration, m > 0
the UAV’s mass, and Ix, Iy, Iz > 0 the UAV’s moments of
inertia with respect to the roll, pitch, and yaw axes, respec-
tively. The discrete-time, linearized, zero-order hold [93]
equations of motion of a quadcopter UAV are given by

xk((j + 1)ΔT ) = Axk(jΔT ) + Buk(jΔT ),
[
rk(iΔT )

vk(iΔT )

]
=

[
rinit − re

vinit

]
,

[
rk(ntΔT )

vk(ntΔT )

]
=

[
r̂k+1 − re

vend

]
,

j ∈ {i, . . . , nt − 1},
i ∈ {0, . . . , nt − 1}, (18)

where re � [0, 0, he]T ∈ R
3, he ≥ 0 denotes the hover

altitude for the UAV at equilibrium, A = eÃΔT , B =
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∫ ΔT

0 eÃσ dσB̃, and Ã �

⎡

⎢
⎢
⎣

06×3 06×2 06×1 16

02×3

[
0 g

−g 0

]
02×1 02×6

04×3 04×2 04×1 04×6

⎤

⎥
⎥
⎦ ∈

R
12×12 and B̃ �

[
08×4

diag(m−1, I−1
x , I−1

y , I−1
z )

]
∈ R

12×4

capture the continuous-time linearized dynamics of the
UAV in a neighborhood of the hover condition.

The algebraic (18) serve as equality constraints for the
model predictive control algorithm underlying the proposed
trajectory planner. The boundary conditions for Eq. 18 are
defined in Table 3; note that since the UAV’s state vector
comprises 12 elements and Eq. 18 involves 12 boundary
conditions on the UAV’s position and velocity, the bound-
ary conditions on the UAV’s pitch, roll, and yaw angles and
their angular velocity are unspecified. Equation 18 can be
replaced by the equations of motion of the aircraft output-
feedback linearized employing the position vector and
yaw angle as measured output. However, since the UAVs
considered in this paper do not perform aggressive maneu-
vers, linear models suffice to describe their dynamics [47].

To enable a tactical behavior, μ6, μ7, μ8, which capture
the UAV’s velocity at the waypoints r̂k can be chosen as
functions of the UAV’s distance from the obstacles’ set. For
example, μ6 and μ7 can be set as

|μ6 cos ψ̂k + μ7 sin ψ̂k| = μ̂ sat

(
μ

fsat
(
μ5(r̂k − rO)

)

)

,

where μ ∈ (0, 1) and μ̂ > 0 are user-defined, and
μ6 cos ψ̂k + μ7 sin ψ̂k captures the UAV’s forward velocity
at the waypoint r̂k . According to this strategy, if the UAV is
at a waypoint r̂k that is sufficiently close to the obstacles’
set, that is, if ‖r̂k − rO‖ ∈ [0, μ−1

5 ), then its forward
velocity at the waypoint r̂k is equal to μμ̂. If ‖r̂k − rO‖ ∈
[μ−1

5 , (μ5μ)−1), then the UAV’s forward velocity is equal
to μμ̂μ5‖r̂k − rO‖. Finally, if the UAV is at a waypoint
r̂k that is sufficiently far from any obstacles, that is, if
‖r̂k − rO‖ ∈ [(μ5μ)−1, ∞), then its forward velocity is

equal to μ̂. Thus, the user-defined parameters μ−1
5 , μ, and

μ̂ can be chosen as follows. By setting μ−1
5 , the user defines

the maximum distance for the UAV from the obstacles’ set
to be considered as sheltered, and by setting (μ5μ)−1, the
user defines the minimum distance for the UAV from the
obstacles’ set to be considered as not sheltered. Finally, by
setting μ̂, the user defines the UAV’s forward velocity at
those waypoints that are sufficiently far from any obstacles
or, equivalently, by setting μμ̂, the user defines the UAV’s
forward velocity at those waypoints that are sufficiently
close to the obstacles’ set. Strategies for the choice of
μ6, μ7, μ8 as functions of the UAV’s position with respect
to the obstacles’ set are numerous, and will be designed in
future works by leveraging bio-inspired tactics [35, 113].

4.2.5 Yaw Angle, Saturation, and Collision Avoidance
Constraints

To find fast solutions of the proposed trajectory planning
problem, constraints on the UAV’s state vector and control
input are captured by

Fk(iΔT )

[
xk(jΔT )

u(jΔT )

]
≤≤ fk(iΔT ), (19)

where Fk(iΔT ) �

⎡

⎣
Fr,k(iΔT ) 0l×2 0l×1 0l×6 0l×4

02×3 02×2 Fψ 02×6 02×4

08×3 08×2 08×1 08×6 Fu

⎤

⎦ ∈

R
(l+10)×16, fk(iΔT ) �

⎡

⎣
fr,k(iΔT )

fψ,k(iΔT )

fu

⎤

⎦, Fr,k(iΔT ) ∈ R
l×3,

Fψ ∈ R
2, Fu ∈ R

8×4, fr,k(iΔT ) ∈ R
l , fψ,k(iΔT ) ∈ R

2,
and fu ∈ R

8. In the following, we discuss in detail how
Eq. 19 is determined.

The optical axes of the UAV’s cameras are aligned to the
aircraft’s roll axis and, consistently with several other results
on the guidance of multi-rotor UAVs [63, 110], the reference
yaw angle ψk(·) is constrained so that the endpoint r̂k+1 is

Table 3 Parameters needed to
define the boundary conditions
for Eq. 18

k = 0 k ∈ {1, . . . , np − 2} k = np − 1

i = 0 rinit = r̂0, rinit = r̂k , rinit = r̂np−1,

vinit = 0, vinit = [μ6, μ7, μ8]T, vinit = [μ6, μ7, μ8]T,

vend = [μ6, μ7, μ8]T. vend = [μ6, μ7, μ8]T. vend = 0.

i ∈ {1, . . . , nt − 1} rinit = r0(iΔT ), rinit = rk(iΔT ), rinit = rnp−1(iΔT ),

vinit = v0(iΔT ), vinit = vk(iΔT ), vinit = vnp−1(iΔT ),

vend = [μ6, μ7, μ8]T. vend = [μ6, μ7, μ8]T. vend = 0.

The columns capture the UAV’s boundary conditions after departing from the first waypoint, over the course
of the mission, and before reaching the last waypoint, respectively. The rows capture the UAV’s boundary
conditions at the first and the successive iterations of the model predictive control algorithm, respectively
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always in the cameras’ field of view. This requirement is
captured by

− ψk(jΔT ) ≤ −ψ̂k(iΔT ) + ψmax, (20)

ψk(jΔT ) ≤ ψ̂k(iΔT ) + ψmax, (21)

where ψ̂k(iΔT ) � tan−1

(
eT

2,3

(
r̂k+1 − rk(iΔT )

)

eT
1,3

(
r̂k+1 − rk(iΔT )

)

)

, ψmax

> 0 denotes the cameras’ half field of view, and tan−1
( ·

·
)

denotes the signed inverse tangent function. Therefore,

Fψ � [−1, 1]T , (22)

and

fψ,k(iΔT )�
[
ψmax−ψ̂k(iΔT ), ψmax + ψ̂k(iΔT )

]T
. (23)

The saturation constraints on the control input are
captured by

− uk(jΔT ) ≤≤ umin, (24)

uk(jΔT ) ≤≤ umax, (25)

where umin, umax ∈ R
4 are user-defined and such that

umax ≥≥ 0 and eT
1,4umin ≥ 0. Therefore,

Fu � [−14, 14]T, (26)

fu � [uT
min, u

T
max]T. (27)

Finally, to enforce collision avoidance constraints on the
UAV’s reference trajectory, we propose a new algorithm to
generate convex, collision-free sets containing the UAV and
excluding any obstacle. According to this method, firstly we
define the closed ellipsoid

Ek(iΔT )

�
{
w ∈ R

3 : (w − rk(iΔT ))TPk(iΔT )(w − rk(iΔT ))

+ck(iΔT ) ≤ 0
}

, (28)

where Pk(iΔT ) ∈ R
3×3 and ck(iΔT ) ∈ R define the shape

of Ek(iΔT ) and a scaling factor for the shape of Ek(iΔT ),
respectively. Both Pk(·) and ck(·) are computed as solutions
of a quadratic discrimination problem, whose cost function
is given by

min eT
8,8bk(iΔT ), (29)

and whose constraints are given by

(wα−rk(iΔT ))TPk(iΔT )(wα−rk(iΔT ))

+ ck(iΔT ) ≤ −γk(iΔT ),

α ∈ {1, . . . , nUAV}, (30)

(wβ − rk(iΔT ))TPk(iΔT )(wβ − rk(iΔT ))

+ ck(iΔT ) ≥ γk(iΔT ),

β ∈ {1, . . . , nO}, (31)

γk(iΔT ) ≥ 1, (32)

Pk(iΔT ) ≥ 13, (33)

bk(iΔT )� [P11,k(iΔT ), P12,k(iΔT ), P13,k(iΔT ), P22,k

(iΔT ), P23,k(iΔT ), P33,k(iΔT ), ck(iΔT ), γk(iΔT )]
denotes the state vector of the discrimination problem,
PΔε,k(·), Δ, ε ∈ {1, 2, 3}, denotes the element on the Δth
row and εth column of Pk(·), wα ∈ R

3 denotes the αth
point used to discretize the UAV, wβ ∈ R

3 denotes the
βth point in the obstacles’ set O, γk(·) ∈ R denotes a
scaling factor, nO ∈ N denotes the number of occupied
voxels in the obstacles’ set O, and nUAV ∈ N denotes
the number of points used to discretize the UAV; in this
paper, the quadcopter is captured by a parallelepiped so that
nUAV = 8. As a second step in the proposed algorithm to
generate convex, collision-free sets, we consider the sam-
pling points s1(iΔT ), . . . , sl(iΔT ) ∈ ∂Ek(iΔT ). Finally,
we compute the hyperplanes tangent to ∂Ek(·) at the l sam-
pling points, and capture collision avoidance constraints by
setting

Fr,k(iΔT ) �

⎡

⎣
l∑

q=1

eq,l ⊗ (sq(iΔT ) − rk(iΔT ))T

⎤

⎦

·Pk(iΔT ), (34)

fr,k(iΔT ) �
l∑

q=1

[
eq,l ⊗ (sq(iΔT ) − rk(iΔT ))T

· Pk(iΔT )sq(iΔT )
]

. (35)

It follows from Eq. 33 that Ek(iΔT ) is a closed ellip-
soid centered at rk(iΔT ), it follows from Eqs. 29 and 30
that the UAV is contained in E̊k(iΔT ), and it follows from
Eqs. 29 and 31 that ∂Ek(iΔT ) intersects O in at least one
point and that E̊k(iΔT ) does not intersect the obstacles’
set. In practice, E̊k(·) contains the UAV and a sufficiently
large number of unoccupied voxels and excludes any occu-
pied voxel. A subset of the l sampling points sq(iΔT ),
q ∈ {1, . . . , l}, is given by those points, where Ek(·) and
O intersect. If the ellipsoid Ek(iΔT ), does not contain the
waypoint r̂k+1, then the boundary conditions to the UAV’s
equations of motion Eq. 18 can not be met. In this case, to
find a feasible reference trajectory, we introduce an addi-
tional waypoint, which is given by projecting r̂k+1 on
∂Ek(iΔT ) along the line that joints r̂k+1 to the current
UAV’s position. Figure 3 illustrates how finding minimizers
of Eq. 29 subject to Eqs. 30–33 produces ellipsoids that sep-
arate the UAV from the obstacles’ set given by an L-shaped
hallway.

The efficacy of the proposed algorithm to find convex
collision avoidance constraint sets has been measured against
the performance of two state-of-the-art algorithms designed
for the same purpose, namely the IRIS algorithm [24] and
the SFC algorithm [53]. In this comparative analysis, whose
results are summarized by Table 4, the proposed algorithm
to find convex collision avoidance constraint sets, the IRIS
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Fig. 3 Graphical representation of the ellipsoid Ek(·) generated as a
solution of the quadratic discrimination problem given by Eq. 29 sub-
ject to Eqs. 30–33. At each time step, the proposed collision avoidance
algorithm produces an ellipsoid that contains the quadcopter in its

interior and is tangent to the obstacles’ set. The first image shows how
the next waypoint, which is depicted as a red dot, may not lie in Ek(·).
In this case, a new waypoint is introduced as the projection of the
original waypoint on the boundary of Ek(·)

algorithm, and the SFC algorithm were executed fifty times
on an Intel NUC 7i7DNBE single board computer at 24
waypoints along a predefined path through a winding cor-
ridor; for additional details on the single-board computer
employed in this paper, see Section 6 below. This corridor,
which is which represented in Fig. 4 by 11,430 homoge-
neously distributed obstacle points, is 5m wide and com-
prises seven 25m long rectilinear segments. To perform this
comparative analysis, the proposed algorithm was coded in
C++, and the computer codes for the IRIS algorithm and
the SFC algorithm were retrieved from the GitHub reposito-
ries [26] and [52], respectively. The SFC algorithm employs
a bounding box to reduce the computational time required
to search through the obstacles’ set O. Therefore, to per-
form these tests, we assumed that the obstacles within a
5 × 5 × 3m parallelepiped centered in the UAV’s position
were visible. It appears from Table 4 and Fig. 5 that the
proposed approach to generate online convex constraint sets
for collision avoidance outperforms both IRIS and the SFC
approach in computational time.

4.2.6 Numerical Solution of the Trajectory Planning Problem

The optimal control framework employed in this paper
allows to compute the reference state vector xk(jΔT ) for
each j ∈ {i, . . . , nt − 1}, i ∈ {0, . . . , nt − 1}, and for all
k ∈ {0, . . . , np − 1}, and the corresponding control input
uk(jΔT ) as minimizers of the cost function Eq. 17 subject
to Eqs. 18 and 19. The complexity of the applications
considered in this work require the use of a numerical solver,
and hence, we employ a model predictive control approach,
whereby minimizers of Eq. 17 subject to Eqs. 18 and 19 are
computed as solutions of a quadratic programming problem.
The cost function Eq. 17 is equivalent to

Ii,k(zi,k) � zT
i,kHi,kzi,k + gT

i,kzi,k,

zi,k ∈ R
16(nt−i), (36)

and the constraints (18) and (19) are equivalent to

Cizi,k = bi,k, (37)

Pi,kzi,k ≤ ≤ hi,k, (38)

respectively, where

zi,k �
[
uT

k (iΔT ),

⎛

⎝
nt−1∑

j=i+1

ej−i,nt−i ⊗
[
xT
k (jΔT ),

uT
k (jΔT )

]T
)T

, xT
k (ntΔT )

]T

∈ R
16(nt−i), (39)

Hi,k � blockdiag
(
Ru, 1nt−i−1⊗R̂k, blockdiag

(
Rr,f, 09×9

))

∈ R
16(nt−i)×16(nt−i), (40)

R̂k �

⎡

⎣
Rr,k 03×9 Rr,u,k

09×3 09×9 09×4

RT
r,u,k 04×9 Ru

⎤

⎦ ∈ R
16×16, (41)

gi,k �
[
qT
u,k + 2rT

k (iΔT )Rr,u,k,

⎛

⎝
nt−1∑

j=i+1

ej−i,nt−i ⊗
[
qT
r,k, 01×9, q

T
u,k

]T

⎞

⎠

T

,

Table 4 Comparative analysis of the computational costs for the
proposed algorithm to generate convex collision avoidance constraint
sets, IRIS, and SFC

Proposed approach IRIS SFC

Average time [s] 0.2023 0.9694 0.3747

Standard deviation [s] 0.0990 0.1660 0.0320

Median time [s] 0.2008 0.9603 0.3543

Minimum time [s] 0.1975 0.9524 0.3524

Maximum time [s] 0.2703 1.0469 0.3753

Executing each algorithm 50 times along 24 waypoints designed to
traverse the winding hallway shown in Fig. 4, the proposed algorithm
outperforms both IRIS and SFC
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Fig. 4 Winding corridor,
waypoints, and reference path
used in tests of the proposed
algorithm to compute convex,
collision-free sets, the SFC
algorithm, and the IRIS
algorithm

qT
r,f − 2r̂T

k+1Rr,f, 01×9

]T

∈ R
16(nt−i), (42)

Ci �

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

−B 112 0 0 . . . 0 0 0
0 −A −B 112 . . . 0 0 0
0 0 0 −A . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 112 0 0
0 0 0 0 . . . −A −B 112

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎦

∈ R
12(nt−i)×16(nt−i), (43)

bi,k � [xT
k (iΔT )AT, 01×12(nt−i−1)]T ∈ R

12(nt−i), (44)

Pi,k � blockdiag
(
Fu, 1nt−i−1 ⊗ Fk(iΔT ), Ff,k

)

∈ R
(l+10)(nt−i)×16(nt−i), (45)

Ff,k �
[
Fr,k(ntΔT ) 0l×2 0l×1 0l×6

02×3 02×2 Fψ 02×6

]
∈ R

(l+2)×12, (46)

hi,k �

⎡

⎢
⎣f T

u ,

⎛

⎝
nt−1∑

j=i+1

ej−i,nt−i ⊗ fk(iΔT )

⎞

⎠

T

, f T
f,k

⎤

⎥
⎦

T

∈ R
(l+10)(nt−i), (47)

ff,k �
[
f T

r,k(ntΔT ), f T
ψ,k(ntΔT )

]T ∈ R
l+2; (48)

as shown in [100] the equivalence of Eqs. 17–19 and 36–
38 can be verified by direct substitution of Eqs. 39–48 in
Eqs. 36–38.

It is important to note that the matrices Hi,k , Ci , and Pi,k

are block-tridiagonal, and this structure can be exploited by
fast tridiagonal solvers such as [4, p. 534], [31], and [109]
to find minimizers of Eq. 36 subject to Eqs. 37 and 38.
Therefore, the proposed approach to the optimal trajectory
planning problem is particularly suitable to compute in real-
time reference trajectories for UAVs operating in hostile,
unknown environments.

The minimizer z∗
i,k ∈ R

16(nt−i) of Eq. 36 subject to
Eqs. 37 and 38 can be found numerically by applying sev-
eral techniques such as infeasible interior point method
[72], the active set method [61, Ch. 10], and the augmented
Lagrangian method [65, Ch. 17]. In this paper, we embed
inequality constraints by means of logarithmic barrier func-
tions and implement the infeasible start Newton method to
solve the resulting optimization problem [14, Ch. 11]. Specif-
ically, we approximate the problem of minimizing (36)
subject to Eqs. 37 and 38 with the problem of minimizing

Ii,lb(zi,k) � zT
i,kHi,kzi,k + gT

i,kzi,k + ν1flb(zi,k),

zi,k ∈ R
16(nt−i), (49)

Fig. 5 Boxplot of computational
costs for the proposed algorithm
to generate convex collision
avoidance constraint sets, IRIS,
and SFC. The underlying
numerical values are presented
in Table 4
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subject to Eq. 37, where

flb(zi,k) � −
(l+10)(nt−i)∑

q=1

log
(
hi,k,q − pi,k,qzi,k

)
(50)

denotes the logarithmic barrier function associated to
Eq. 38, hi,k,q denotes the qth element of hi,k , q ∈
{1, . . . , (l + 10)(nt − i)}, pi,k,q denotes the qth row of
Pi,k , and ν1 > 0 is user-defined and captures the accuracy
in approximating the optimal control problem given by
Eqs. 36–38 with the optimal control problem given by
Eqs. 49 and 37. Successively, we apply the infeasible start
Newton method to compute the minimizer of Eq. 49 subject
to Eq. 37.

Smaller values of ν1 guarantee that the minimizer of
Eq. 49 subject to Eq. 37 is closer to the minimizer of Eq. 36
subject to Eqs. 37 and 38. However, arbitrarily small values
of ν1 may induce computational errors while evaluating the
term ν1flb(zi,k) in Eq. 49 [14, p. 564]. To overcome this
issue, we set ν1 = 2.00 at the first step of Newton’s iterative
method and decrease the value of ν1 at each successive
iteration by a factor of 0.9, until z∗

i,k meets the desired
tolerance ε > 0 [14, p. 569]. Based on an analysis of
the duality gap associated with z∗

i,k as a function of ν1,
this user-defined parameter can be alternatively set equal to
ε[(l + 10)(nt − i)]−1[14, p. 569].

The infeasible start Newton method is initialized by
means of a warm start method [14, pp. 531-540, 571],
[100]: to compute z∗

i,k , i ≥ 1, the first iteration of
the Newton method is initiated by z∗

i−1,k , and subsequent
iterations are initiated by the approximation of z∗

i,k obtained
at the previous iteration. To compute z∗

0,k , the first iteration
of the Newton method is initiated by setting z0,k =
[0, xk(0), 0, . . . , xk(0)]T.

4.2.7 Introduction of Soft Constraints

The inequality constraints given by Eq. 38 are hard con-
straints. If any of the constraints given by Eq. 38 becomes
active, then the control input is expected to experience a
sudden increase [9, Ch. 4]. In this section, we introduce
soft constraints: we modify the cost function Eq. 49 to dis-
courage, but not prevent, the UAV from approaching any of
the constraints given by Eq. 38 within user-defined safety
margins.

Let μ9 ≥ 0 denote some user-defined safety margin on
the UAV’s distance from the obstacles’ set. It follows from
Eqs. 34 and 35 that the collision avoidance constraints are
captured by

Fr,k(iΔT )rk(jΔT ) ≤≤ f̂r,k(iΔT ), (51)

where

f̂r,k(iΔT ) � fr,k(iΔT ) − μ9
∑l

q=1 eq,l; (52)

smaller values of μ9 will induce a more tactical behavior
by inducing the UAV to coast obstacles more closely.
Furthermore, let ν2 ≥ 0 denote some user-defined safety
margin on the UAV’s maximum yaw angle. In this case,
it follows from Eqs. 22 and 23 that the camera’s pointing
requirements are captured by

Fψψ(jΔT ) ≤≤ f̂ψ,k(iΔT ), (53)

where f̂ψ,k(iΔT ) � fψ,k(iΔT ) − ν2
∑2

q=1 eq,2. Lastly, let

ν3 ∈ R
4, where ν3 ≥≥ 04, denote user-defined margins on

the saturation constraints for each component of the control
input uk(·). In this case, it follows from Eqs. 26 and 27 that
saturation constraints are captured by

Fuuk(jΔT ) ≤≤ f̂u, (54)

where f̂u � fu − ν3. Conditions (51), (53), and (54) can be
equivalently expressed as

Fk(iΔT )

[
xk(jΔT )

uk(jΔT )

]
≤≤ f̂k(iΔT ), (55)

where f̂k(iΔT ) �
[
f̂ T

r,k(iΔT ), f̂ T
ψ,k(iΔT ), f̂ T

u

]T ∈ R
l+10.

The inequality constraints captured by Eq. 55 can be embed-
ded as soft constraints in the cost function (49) by adding
a logarithmic penalty function, namely the Kreisselmeier-
Steinhauser penalty function [43]. Specifically, the refer-
ence state vector xk(jΔT ) for each j ∈ {i, . . . , nt}, i ∈
{0, . . . , nt}, and for all k ∈ {0, . . . , np − 1}, and the corre-
sponding control input uk(jΔT ) are computed as solutions
of the optimization problem with cost function

Îi,k,lb(zi,k) � Ii,lb(zi,k) +
(l+10)(nt−i)∑

q=1

1

ν4,i,k,q

· log

(
1 + e

ν4,i,k,q

[
pi,k,q zi−ĥi,k,q

])
, (56)

subject to Eq. 37, where ν4,i,k,q , i ∈ {0, . . . , nt − 1}, k ∈
{0, . . . , np−1}, q ∈ {1, . . . , (l+10)(nt−i)}, is user-defined,
and is chosen according to the following procedure outlined
in [77]. If there exists di,k ∈ R

16(nt−i) such that Pi,kdi,k = 0,
‖di,k‖∞ < 1, and di,k >> 0, then

ν4,i,k,q � 1

ĥi,k,q

log

[
1

di,k,q

− 1

]
, (57)

where Pi,k is given by Eq. 45, pi,k,q denotes the qth row of
Pi,k , di,k,q denotes the qth element of di,k , ĥi,k,q denotes the
qth element of

ĥi,k �

⎡

⎢
⎣f̂ T

u ,

⎛

⎝
nt−1∑

j=i+1

ej−i,nt−i ⊗ f̂k(iΔT )

⎞

⎠

T

, f̂ T
f,k

⎤

⎥
⎦

T

∈ R
(l+10)(nt−i) (58)
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and

f̂f,k �
[
f̂ T

r,k(ntΔT ), f̂ T
ψ,k(ntΔT )

]T ∈ R
l+2. (59)

Alternatively, if there is no di,k such that ‖di,k‖∞ < 1
and di,k >> 0, then we set ν4,i,k,q arbitrarily large for
all i ∈ {0, . . . , nt − 1}, k ∈ {0, . . . , np − 1}, and q ∈
{1, . . . , (l + 10)(nt − i)}.

The Kreisselmeier-Steinhauser penalty function is given
by the second term in Eq. 56. The use of this penalty
function to add soft constraints to the cost function (49)
has three main advantages. Firstly, this function does
not disrupt the block-tridiagonal structure of the original
optimization problem captured by Eq. 49 subject to Eq. 37
[77]. Therefore, proceeding as in Section 4.2.6, minimizers
of Eq. 56 subject to Eq. 37 can be found by applying the
infeasible start Newton method with warm start. Secondly,
the parameter ν4,i,k,q given by Eq. 57 guarantees that the
Kreisselmeier-Steinhauser function attains its minimum for
zi = 0 and hence, control inputs that minimize (56)
subject to Eq. 37 are not offset compared to the control
inputs minimizing the original optimization given by the
cost function Eq. 36 subject to Eq. 37 [77, 104]. Lastly,
larger values of ν4,i,k,q guarantee that the minimizer of
Eq. 56 subject to Eq. 37 is closer to the minimizer of Eq. 49
subject to Eq. 37. For this reason, by proceeding as in [77],
if ‖di,k‖∞ < 1 and di,k >> 0, then at each iteration
of Newton’s method di,k in Eq. 57 is rescaled by a factor
of 0.4; this scaling factor has been chosen for providing
a satisfactory trade-off between accuracy and convergence
rate. Alternatively, if there is no di,k such that ‖di,k‖∞ < 1
and di,k >> 0, then ν4,i,k,q is given the arbitrary large value
of 200. Both Eqs. 58 and 59 directly follow from Eqs. 47
and 48, respectively, by replacing fu, fk(·), ff,k(·), fr,k(·),
and fψ,k(·) with f̂u, f̂k(·), f̂f,k(·), f̂r,k(·), and f̂ψ,k(·),
respectively.

The role of the user-defined parameters μ4, . . . , μ9 and
recommendations for their tuning are summarized in Table 5.
Together with Table 1, this table summarizes the role of
the user-defined parameters needed to induce reckless or
tactical behaviors in a UAV equipped with the proposed
guidance system.

5 Navigation System’s Architecture

The tactical guidance system described in Section 4 is
supported by a custom-made vision-based navigation sys-
tem, which detects obstacles, creates an occupancy map,
deduces the obstacles’ set from the occupancy map, and
provides estimated information on the UAV’s state vector.
In particular, a stereo depth camera and a tracking cam-
era detect the obstacles surrounding the UAV. To prevent

high computational loads due to high data volumes pro-
duced by the depth camera, the resolution of the images
is down-sampled so that point clouds that are further from
the UAV are removed, and point clouds that are closer to
the UAV are retained [19, pp. 17-18]. The tracking camera
also estimates the UAV’s attitude, translational velocity, and
angular velocity with respect to an inertial reference frame
I. Successively, Bresenham’s ray tracing algorithm [15] cal-
culates the UAV’s direction and distance with respect to
obstacles and, together with an inverse sensor model [5],
determines the occupancy along the ray from the sensor to
the point cloud. The occupancy map is then updated by cal-
culating the posterior probability distribution, conditioned
on past measurements [91, Ch. 9]. Lastly, a binarization
algorithm marks all voxels of the occupancy map, whose
probability of being occupied is higher than a user-defined
threshold, as occupied and all other voxels as empty. The
resulting binarized map forms an occupancy map, whose
voxels’ locations are expressed in the reference frame I. A
schematic representation of this navigation system is shown
in Fig. 6, and additional details can be found in [19].

In this paper, the voxels which have not been seen
by the vision-based navigation system are classified as
unoccupied, since the proposed guidance system enables
tactical behaviors by coasting obstacles and unexplored
areas may be completely unsheltered. This feature ensures
that the path planning subsystem computes a path from the
take-off position r̂0 to the goal set G that is complete, also
in case G is not visible from r̂0. Moreover, a voxel retains its
last known probability of being occupied once the voxel has
left the line of sight of the navigation system. This feature
allows faster re-planning whenever the UAV must revisit
known areas, whose occupancy map has not changed.

6 Implementation of the Proposed Guidance
and Navigation System

The guidance system presented in Section 4 and the naviga-
tion systems presented in Section 5 have been implemented
on a custom-built quadcopter. This UAV is 0.4m long, 0.4m
wide, and 0.3m high, its mass is 2.0kg, and, according to a
high-fidelity computer aided design (CAD) model, its prin-
cipal moments of inertia are Ix = 0.0205kg·m2, Iy =
0.0143kg·m2, and Iz = 0.0281kg·m2. This UAV is equipped
with an Intel NUC 7i7DNBE single-board computer, where
software implementing both the proposed guidance system
and the navigation system is executed; this computer is
characterized by a 4.20GHz Intel i7-8650 Processor and a
4GB memory, and executes the Ubuntu 18.04 operating sys-
tem. The UAV is also equipped with a Pixhawk autopilot
that serves as an inertial measurement unit and controls the
UAV’s propellers, an Intel RealSense D435i that serves as



J Intell Robot Syst          (2021) 103:71 Page 17 of 36   71 

Table 5 Summary of the user-defined parameters of the proposed trajectory planning system, and recommended values to instill reckless or
tactical behaviors

Parameter Description Reckless Domain Tactical Domain Equation number

μ4 Relative important of of reaching a waypoint r̂k over
coasting the obstacles’ set O

(0.7, 1] (0, 0.7] Eq. 9

μ5 Varies the attractive effect of obstacles (0, 0.5) [0.5, ∞) Eq. 9

μ6 Velocity boundary condition in the x-direction at the
waypoint r̂k

Eq. 18

μ7 Velocity boundary condition in the y-direction at the
waypoint r̂k

R; depends on
user’s strategy

Eq. 18

μ8 Velocity boundary condition in the z-direction at the
waypoint r̂k

Eq. 18

μ9 Safety margin on the UAV’s collision avoidance induced
by soft constraints.

Arbitrarily large
& positive

Arbitrarily small
& positive

Eq. 52

a stereo depth camera, and an Intel RealSense T265 that
serves as a tracking camera. The D435i’s horizontal field-
of-view angle is 86.00◦, its vertical field-of-view angle is
57.00◦, its depth is of 9m, and it communicates with the
onboard computer via USB-C cable. The T265’s horizontal
field-of-view angle is 69.40◦, its vertical field-of-view angle
is 42.50◦, and it communicates with the onboard computer
via USB Micro B cable. The Pixhawk autopilot commu-
nicates with the onboard computer over a dedicated USB
FTDI serial line.

Figure 7 provides a schematic representation of the soft-
ware implementing the proposed guidance and navigation
systems. This software revolves around the Flight Stack,
which receives information on the UAV’s estimated state
and the environment’s map from the navigation system and
the inertial measurement unit, communicates with each of
the sub-modules of the guidance system, and passes the
UAV’s reference trajectory to the Pixhawk autopilot. The
estimates on the UAV’s position and yaw angle produced by
the navigation system are directly passed to the Flight Stack;
the navigation system communicates with the Flight Stack
at a frequency of approximately 20-60Hz, depending on the
objects in view of the cameras. The estimates on the UAV’s
attitude, translational velocity, and angular velocity pro-
duced by the navigation system are passed to the Pixhawk
autopilot and integrated with its estimates on the UAV’s

state by means of a Kalman filter. Finally, estimates on the
UAV’s pitch angle, roll angle, translational velocity, and
angular velocity are passed from the autopilot to the Flight
Stack. The estimates of the UAV’s attitude, angular velocity,
and angular acceleration have an accuracy of approximately
±0.05◦, ±0.004◦/s, and ±7◦/s2, respectively.

The guidance system’s sub-modules of the Flight Stack
are the path planner, which implements the search algorithm
presented in Section 4.1, the collision avoidance algorithm,
which solves the discrimination problem captured by Eq. 29
subject to Eqs. 30–33, and the trajectory planner, which
solves the optimization problem captured by the cost
function Eq. 56 subject to Eq. 37 according to the fast model
predictive control approach presented in Section 4.2.6.
The path planner leverages a custom-made implementation
of the A∗ optimization algorithm in C++, the collision
avoidance algorithm exploits a C++ implementation of the
semi-definite programming algorithm (SDPA) [27], and the
trajectory planner exploits the C++ code presented in [100,
101], customized to implement the results presented in
Section 4.2.7.

Alternative approaches to the codes presented in [101]
have been considered to solve in real-time the quadratic pro-
gramming problem presented in Section 4.2.7 at each time
step iΔT . Among these, it is worthwhile to mention CVX-
GEN [60], ACADO [32], ACADOS [96], and NLopt [36].

Fig. 6 Schematic representation of the vision-based navigation system employed to detect obstacles, create a voxel map of the environment, and
eventually produce the obstacles’ set employed by the proposed guidance system
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Fig. 7 Schematic representation of the software architecture imple-
menting the proposed guidance system on a quadcopter UAV equipped
with a stereo depth camera, a tracking camera, and an autopilot. The
vision-based navigation system produces a voxel map of the environ-
ment and, together with the inertial measurement unit embedded in the
autopilot, estimates the UAV’s state. These information are used by the

guidance system to produce reference trajectories. The software imple-
menting the proposed guidance system is structured in a path planning
thread, a collision avoidance thread, and a trajectory planning thread,
which are coordinated by the Flight Stack program. The control law
embedded in the autopilot actuates the UAV’s propellers so that the
UAV follows its reference trajectory

However, unlike the proposed guidance system, CVXGEN,
ACADO, and ACADOS do not employ a warm start method.
Our trajectory planner, CVXGEN, ACADO, and ACADOS
solve optimization problems by means of iterative pro-
cesses, and a suitable choice of the initial guess for each
of these iterations allows to reduce the convergence time.
According to the warm start method, fixed the time step
iΔT , the initial guess for each iteration is given by the out-
come of the previous iteration at iΔT . However, if utilized
to implement the model predictive control approach, CVX-
GEN, ACADO, and ACADOS can be initiated at the time
step (i + 1)ΔT by employing the solution obtained at the
time step iΔT [6, pp. 26-31]. Additional reasons for not
employing ACADO and ACADOS in this work is that these
solvers under-perform with respect to specific solvers for
optimization problems with large state vectors, such as those
considered in this paper at earlier iterations of the model
predictive control algorithm [97]. Finally, the NLopt man-
ual discourages its use for solving quadratic optimization
problems.

The path planner produces collision-free reference paths
at a rate of approximately 0.5-20Hz, depending on the
values of μ1, μ2, and μ3 in Eqs. 3 and 4, and communicates
with the Flight Stack at approximately 100Hz. The path
planner is re-executed at least every 2s or after the UAV
traveled 1.5m, which guarantees that a new path is produced
after the aircraft has traveled approximately 3.75 times

its size. Feasible reference trajectories are generated at
approximately 50Hz. Once a feasible reference trajectory
is outlined, it is sent from the Flight Stack to the Pixhawk
autopilot at a rate of (ntΔT )−1. Similarly to the approach
presented in [90], the trajectory planner is executed before
the UAV reaches the next waypoint; producing a new
reference trajectory only after the aircraft has reached
a waypoint may cause unacceptable delays. The SDPA
algorithm produces constraint sets to enforce collision
avoidance at a frequency of 25Hz circa. A critical aspect
for the integration of the path planner, the trajectory
planner, and the SDPA algorithm is the synchronization
of these modules and their frequency of execution relative
to UAV’s velocity. In the proposed architecture, setting
arbitrarily large values of the user-defined parameters μ6,
μ7, and μ8, which characterize the UAV’s velocity at the
waypoints, without accounting for the speed of the path
planner, trajectory planner, and SDPA algorithm may lead to
failures in completely unknown environments. Future work
directions involve computing μ6, μ7, and μ8 as solutions
of a constrained optimization problem that accounts for the
user’s requirements and the computational constraints given
by the sub-modules of the Flight Stack.

The autopilot executes a proportional-integral-derivative
controller [47] to actuate the 7 × 4.5 dual-blade propellers
mounted on AirA 1,200kV motors. Since the model predic-
tive control algorithm produces open-loop control inputs,
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which are not robust to modeling uncertainties, the linear
closed-loop control law provided by the UAV’s autopilot has
been employed to steer the quadcopter.

7 Numerical Analysis of the Proposed
Guidance System

In this section, we present the results of 438 software-in-
the-loop simulations to validate the hardware and software
architecture presented in Section 6 and provide a taxonomy
of flight behaviors deduced by varying some of the user-
defined parameters that determine the UAV’s cautiousness
level, the UAV’s initial conditions, and the occupancy map.

7.1 Validation of the Proposed Guidance System
through Software-in-the-Loop Simulations

In the following, we present the results of two software-
in-the-loop simulations aimed at showing the ability
of the proposed guidance system to generate both a
tactical trajectory and a reckless trajectory in an unknown
environment, while traveling from a given initial position to
a goal point, whose position is specified relative to the initial
position. Figure 8 shows the results of these simulations
performed using the same voxel map as in Fig. 2. In
the first simulation, a reckless behavior was produced by
setting μ2 = 0.40, μ4 = 1.00, and μ5 = 0.01; this
reference trajectory is denoted by a red solid line. In the
second simulation, a cautious behavior was produced by
setting μ2 = 0.75, μ4 = 0.80, and μ5 = 0.50; this
reference trajectory is denoted by a blue dashed line. For
both simulations, we set μ1 = 0.20, μ3 = 0.20, μ6 = 0.50,
μ7 = 0.50, μ8 = 0.00, μ9 = 0.25, ΔT = 0.01s, nt = 80,
ψmax = 43.00◦, R̃r = Rr,f = 700 · 13, R̃r,u = 03×4, Ru =
blockdiag(1, 300 · 13), q̃r = qr,f = 03 q̃u = 04, umax =
[1.50, 0.5, 0.5, 0.5]T, and umin = − [0.0, 0.5, 0.5, 0.5]T.

Figure 8 shows the flight times at multiple sample posi-
tions along the reckless and tactical reference trajectories; it
is apparent that following the more reckless trajectory, the
UAV reaches its goal earlier than following the more cau-
tious trajectory. Figure 8 also shows the separating ellipsoid
Ek(iΔT ) centered at [15.41, −4.72, 1.20]Tm. Before these
numerical simulations were performed, the voxel map has
been produced and then memorized on the UAV’s single-
board computer. Thus, the voxel map was disclosed to the
guidance system as if it were produced in the real-time by
the onboard Intel RealSense D435i; this camera’s field of
view is represented in Fig. 8 by a cone, whose apex is in the
UAV’s current position and whose height is 10m. If a point
in the obstacles’ set O laid in the simulated camera’s field
of view, then it was marked as detected and disclosed to the
guidance system for all future time.

Table 6 presents statistical data of both reference
trajectories. As predicted in Sections 4.1 and 4.2, larger
values of μ2 and μ5 and smaller values of μ4 produce
more tactical reference trajectories, whereas smaller values
of μ2 and μ5 and larger values of μ4 produce more reckless
trajectories.

7.2 Taxonomy of Flight Behaviors Varying Individual
Parameters

In this section, we present the results of two sets of software-
in-the-loop simulations performed to establish a taxonomy
of flight behaviors as a function of each of the user-
defined parameters μ1, . . . , μ5. These five parameters were
chosen among the user-defined parameters μ1, . . . , μ9 for
their ability, according to our experience of the proposed
guidance system, to affect the UAV’s cautiousness level
more markedly.

For the first set of simulations, we chose μ1 = 1.00,
μ2 = 0.10, μ3 = 0.50, μ4 = 1.00, and μ5 = 0.10
to generate a reckless reference trajectory. Then, while
keeping four of these five parameters fixed, we varied
one parameter at the time both within intervals producing
reckless behaviors and within intervals producing tactical
behaviors; for details, see Tables 7 and 8. In the second set
of simulations, we chose μ1 = 0.10, μ2 = 0.95, μ3 = 0.10,
μ4 = 0.80, and μ5 = 0.50 to generate a tactical reference
trajectory. Then, we varied each of these parameters within
the same intervals as for the first set of simulations; for
details, see Tables 9 and 10. For both sets of simulations,
the UAV was tasked to fly from r0 = [1.0, 1.0, 0.6]Tm
to the goal set G = {[1.0, 19.0, 0.6]T}m; the remaining
user-defined parameters were the same as in Section 7.1.

Tables 7–10 show the average length of the UAV’s
reference trajectories, the standard deviation of the length of
the UAV’s reference trajectories, the average distance from
the obstacles’ set, and the standard deviation of the distance
from the obstacles’ set for the 200 numerical simulations
performed to support the proposed variational analyses. By
comparing the third and the fifth columns of Table 7 with
the third and the fifth columns of Table 9, respectively,
and the third and fifth columns of Table 8 with the third
and fifth columns of Table 10, respectively, it appears that
variations of the user-defined parameters μ1, . . . , μ5 about
a reckless parameter set produce smaller variations in the
UAV’s behavior than variations of the same parameters
about a tactical parameter set.

Figure 9 shows the results of 80 numerical simulations
obtained by performing the proposed variational analyses as
functions of μ2 and μ1. From the two images on the left of
this figure, we deduce that if four of the five user-defined
parameters are designed to impose a reckless behavior, then
the UAV’s reference trajectories do not deviate ostensibly
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Fig. 8 UAV reference trajectories obtained through software-in-
the-loop simulations. Both reference trajectories start at r̂0 =
[−1.80, 4.00, 0.80]Tm and end at the goal set G = {[−12.60, 17.40,

1.00]T}m. The reference trajectory obtained by setting μ2 = 0.75,
μ4 = 0.80, and μ5 = 0.50 is represented by a blue dashed
line and shows a more cautious behavior since it closely coasts the

obstacles’ set. The reference trajectory obtained by setting μ2 = 0.40,
μ4 = 1.00, and μ5 = 0.01 is represented by a red solid line and shows
a more reckless behavior since it aims at the end-goal directly. The
flight time at multiple locations along the UAV’s reference trajectories,
the separating ellipsoid Ek(iΔT ) centered at [−4.72, 15.41, 1.20]Tm,
and the simulated camera’s field-of-view as shown as well

Table 6 Statistical data for the
simulations shown in Fig. 8 Reckless Trajectory Tactical Trajectory

Trajectory length 19.53m 22.92m

Average distance from O 1.84m 0.57m

Maximum distance from O 3.43m 1.67m

Flight time 51.46s 79.12s

Table 7 Average length of the UAV’s reference trajectories, standard
deviation of the length of the UAV’s reference trajectories, average
distance from the obstacles’ set, and standard deviation of the dis-
tance from the obstacles’ set O when varying μ1, . . . , μ5 one at the

time within ranges that produce reckless behaviors, while the remain-
ing four parameters are fixed and take values that induce reckless
behaviors

Varied Avg. Std. Dev. Avg. Dist. Std. Dev.

Parameters Traj. Length Traj. Length from O Dist. from O

μ1 ∈ [1.00, 2.00] 29.16m 1.23m 1.56m 0.05m

μ2 ∈ [0.05, 0.50) 28.73m 0.645m 3.65m 0.14m

μ3 ∈ (0.70, 0.95] 29.92m 1.81m 3.51m 0.10m

μ4 ∈ [0.70, 1.00] 29.38m 1.85m 1.70m 0.09m

μ5 ∈ [0.01, 0.50) 29.36m 1.53m 3.36m 0.09m

This data set was produced by evenly sampling each parameter’s interval 10 times for a total of 50 simulations
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Table 8 Average length of the UAV’s reference trajectories, standard
deviation of the length of the UAV’s reference trajectories, average
distance from the obstacles’ set, and standard deviation of the dis-
tance from the obstacles’ set when varying μ1, . . . , μ5 one at the time

within ranges that produce tactical behaviors, while the remaining four
parameters are fixed and take values that induce reckless behaviors

Varied Avg. Std. Dev. Avg. Dist. Std. Dev.

Parameters Traj. Length Traj. Length from O Dist. from O

μ1 ∈ (0.00, 1.00] 29.57m 1.78m 1.71m 0.10m

μ2 ∈ [0.50, 0.95] 31.67m 3.30m 3.74m 0.10m

μ3 ∈ [0.01, 0.70] 29.06m 0.74m 3.52m 0.06m

μ4 ∈ [0.05, 0.70) 28.42m 0.72m 1.64m 0.06m

μ5 ∈ [0.50, 0.95] 28.97m 0.68m 3.21m 0.12m

This data set was produced by evenly sampling each parameter’s interval 10 times for a total of 50 simulations

from the average reckless trajectory, despite the fact that the
fifth parameter takes values that induce a tactical behavior.
This analysis is supported by the fact that the values in
the second column of Table 7 differ between 1.33% and
9.28% from the corresponding values in Table 8. From the
two images on the right of Fig. 9, we deduce that if four
of the five user-defined parameters are designed to impose
a tactical behavior, then the UAV’s reference trajectories
are tactical whenever the fifth parameter takes values that
would induce a tactical behavior, and the UAV’s reference
trajectories are reckless whenever the fifth parameter takes
values that would induce a reckless behavior. This analysis
is supported by the fact that the values in the second column
of Table 9 differ between 1.73% and 27.32% from the
corresponding values in Table 10.

In conclusion, from Fig. 9 and Tables 7–10, we deduce
that if a reckless reference trajectory is to be produced, then
the UAV’s reference trajectories are clustered around the
average reckless trajectory. Thus, the UAV exhibits a more
predictable behavior. Conversely, if a tactical reference
trajectory is to be produced, then the UAV’s reference
trajectories are more scattered, and different obstacles are
coasted. Thus, the UAV exhibits a less predictable behavior

whenever it does not need to traverse narrow passages, such
as doors and windows, to reach the goal set: the values in
the fourth column of Table 7 are between 0.28% and 8.77%
from the corresponding values in Table 8, and the values in
the fourth column of Table 9 are between 0.74% and 65.71%
from the corresponding values in Table 10.

7.3 Taxonomy of Flight Behaviors VaryingMultiple
Parameters

In this section, we present the results of 36 software-in-the-
loop simulations to establish a taxonomy of flight behaviors
as a function of the triplet (μ1, μ2, μ3), which characterizes
the path planner, and the pair (μ4, μ5), which more marked-
ly characterize the level of cautiousness in the UAV’s
trajectory planner. The variational analysis presented in
Section 7.2 concerned the effect of each of these parameters
individually on the UAV’s behavior, whereas the analysis
presented in the following accounts for the coupling effect
of these parameters.

For these simulations, we analyzed the trajectories obtained
from by setting (μ1, μ2, μ3) × (μ4, μ5) ∈ S1 × S2, where
S1 � {(2.00, 0.10, 1.50), (1.60, 0.20, 1.25), (1.20, 0.30,

Table 9 Average length of the UAV’s reference trajectories, standard
deviation of the length of the UAV’s reference trajectories, average dis-
tance from the obstacles’ set, and standard deviation of the distance

from the obstacles’ set when varying μ1, . . . , μ5 one at the time
within ranges that produce reckless behaviors, while the remaining
four parameters are fixed and take values that induce tactical behaviors

Varied Avg. Std. Dev. Avg. Dist. Std. Dev.

Parameters Traj. Length Traj. Length from O Dist. from O

μ1 ∈ [1.00, 2.00] 32.02m 0.29m 3.72m 0.02m

μ2 ∈ [0.05, 0.50) 41.96m 4.02m 2.64m 0.15m

μ3 ∈ (0.70, 0.95] 38.10m 8.85m 1.60m 0.26m

μ4 ∈ [0.70, 1.00] 30.58m 0.31m 1.34m 0.02m

μ5 ∈ [0.01, 0.50) 31.29m 0.75m 1.35m 0.04m

This data set was produced by evenly sampling each parameter’s interval 10 times for a total of 50 simulations



   71 Page 22 of 36 J Intell Robot Syst          (2021) 103:71 

Table 10 Average length of the UAV’s reference trajectories, standard
deviation of the length of the UAV’s reference trajectories, average
distance from the obstacles’ set, and standard deviation of the dis-
tance from the obstacles’ set when varying μ1, . . . , μ5 one at the time

within ranges that produce tactical behaviors, while the remaining four
parameters are fixed and take values that induce tactical behaviors

Varied Avg. Std. Dev. Avg. Dist. Std. Dev.

Parameters Traj. Length Traj. Length from O Dist. from O

μ1 ∈ (0.00, 1.00] 30.23m 1.29m 1.31m 0.22m

μ2 ∈ [0.50, 0.95] 40.87m 6.41m 2.57m 0.44m

μ3 ∈ [0.01, 0.70] 52.42m 11.43m 1.37m 0.29m

μ4 ∈ [0.05, 0.70) 32.61m 4.03m 1.40m 0.18m

μ5 ∈ [0.50, 0.95] 30.75m 0.71m 1.34m 0.03m

This data set was produced by evenly sampling each parameter’s interval 10 times for a total of 50 simulations

Fig. 9 Software-in-the-loop simulation results to establish a taxon-
omy of flight behaviors as a function of the user-defined parameters
μ2 and μ1. The top left image shows the results of 20 simulations
obtained by varying μ2 in [0.05, 0.95], while μ1, μ3, μ4, and μ5
take values that induce a reckless trajectory. The top right image
shows the results of 20 simulations obtained by varying μ2, while
μ1, μ3, μ4, and μ5 take values that induce a tactical trajectory. The
bottom left image shows the results of 20 simulations obtained by
varying μ1, while μ2, . . . , μ5 take values that induce a reckless tra-
jectory. The bottom right image shows the results of 20 simulations
obtained by varying μ1 in [0.05, 2.00], while μ2, . . . , μ5 take values
that induce a tactical trajectory. The black line in the top images show
the trajectory obtained by averaging over all trajectories obtained by
spanning μ2 in [0.05, 0.95], while μ1, μ3, μ4, and μ5 take values that

induce a reckless trajectory. The bottom images show the trajectory
obtained by averaging over all trajectories obtained by spanning μ1 in
[0.05, 2.00], while μ2, . . . , μ5 take values that induce a reckless tra-
jectory. It appears from the images on the left that if four of the five
user-defined parameters are designed to impose a reckless behavior,
then the UAV’s reference trajectories do not deviate ostensibly from
the average reckless trajectory, despite the fact that the fifth parameter
takes also values that would induce a tactical behavior. It appears from
the images on the right that if four of the five user-defined parameters
are designed to impose a tactical behavior, then the UAV’s reference
trajectories are tactical whenever the fifth parameter takes values that
would induce a tactical behavior, and the UAV’s reference trajecto-
ries are reckless whenever the fifth parameter takes values that would
induce a reckless behavior
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1.00), (0.30, 0.75, 0.10), (0.20, 0.85, 0.08), (0.10, 0.95,

0.05)} and S2 � {(1.00, 0.001), (0.90, 0.01), (0.80, 0.01),

(0.50, 0.01), (0.40, 0.90), (0.30, 1.00)}; the triplets in S1

and the pairs in S2 are sorted according to their ability to
induce an increasingly cautious behavior in the UAV. In
all 36 simulations, we set r0 = [1.00, 1.00, 1.00]Tm and
G � {[19.00, 17.00, 1.00]T}m.

Figures 10 and 11 show the number of times unoc-
cupied voxels in a given voxel map are traversed by the
UAV. In particular, Fig. 10 shows the simulation results
assuming that the triplet (μ1, μ2, μ3) is fixed and the pair
(μ4, μ5) takes values in S2, and Fig. 11 shows the simula-
tion results assuming that the pair (μ4, μ5) is fixed and the
triplet (μ1, μ2, μ3) takes values in S1. Both figures show
that immediately after take-off and short before travers-
ing the door to the goal point, all reference trajectories are
substantially overlapping. To reach the door to the goal
point, three clusters of reference trajectories are shown in
both figures, namely Cluster 1 of more tactical trajecto-
ries coasting the wall at X = 20m, and Clusters 2 and
3 of more reckless trajectories. Figure 10 shows that, for
any (μ4, μ5) ∈ S2, Cluster 1 collects reference trajectories
obtained with (μ1, μ2, μ3) ∈ {(0.30, 0.75, 0.10), (0.20,

0.85, 0.08), (0.10, 0.95, 0.05)}, Cluster 2 collects reference
trajectories obtained with (μ1, μ2, μ3) = (2.00, 0.10, 1.50),
and Cluster 3 collects reference trajectories obtained
with (μ1, μ2, μ3) ∈ {(1.20, 0.30, 1.00), (1.60, 0.20, 1.25)}.
Figure 11 shows that for any (μ1, μ2, μ3) ∈ S1, Cluster 1
collects tactical reference trajectories prevalently obtained
with (μ4, μ5) ∈ {(0.50, 0.80), (0.40, 0.90), (0.30, 1.00)},

Clusters 2 collects re-ference trajectories prevalently
obtained with (μ4, μ5) ∈ {(1.00, 0.001), (0.90, 0.10)},
and Clusters 3 collects reference trajectories prevalently
obtained with (μ4, μ5) ∈ {(0.90, 0.10), (0.80, 0.70)}. How-
ever, each cluster collects reference trajectories produced
by all (μ4, μ5) ∈ S2. Therefore, we deduce that the triplet
(μ1, μ2, μ3) affects the UAV’s level of cautiousness more
than the pair (μ4, μ5).

Finally, both in Fig. 10 and in Fig. 11, Cluster 1 is
wider than Clusters 2 and 3. Therefore, consistently with our
analysis in Section 7.2, if a reckless reference trajectory is
to be produced, then the proposed guidance system exhibits
a more predictable behavior.

7.4 Taxonomy of Flight Behaviors Varying
the Take-off Location

In this section, we present the results of 100 software-in-
the-loop simulations aimed at establishing a taxonomy of
flight behaviors as a function of the UAV’s take-off position.
For the first set of tests, we chose μ1 = 1.00, μ2 = 0.50,
μ3 = 0.10, μ4 = 0.80, and μ5 = 0.10 to obtain reckless
reference trajectories, and for the second set of test, we
chose μ1 = 0.10, μ2 = 0.75, μ3 = 0.05, μ4 = 0.70, and
μ5 = 0.50 to obtain tactical reference trajectories. In both
sets of numerical simulations, the UAV’s initial position
was given by r0 = [rx,0, ry,0, 0.6]T, where (rx,0, ry,0) are
evenly spaced in [2, 10] × [1, 4]m, the goal set was given
by G = {[1.00, 19.00, 0.60]T}m, the remaining simulation
parameters were the same as in Section 7.1.

Fig. 10 Number of times unoccupied voxels in the given occu-
pancy map are traversed by the UAV. These simulation results have
been achieved by assuming that the triplet (μ1, μ2, μ3) is fixed
and the pair (μ4, μ5) takes values in S2. Immediately after take-off
and short before traversing the door to the goal point, all refer-
ence trajectories are substantially overlapping. To reach the door to

the goal point, all trajectories group in three main clusters. Clus-
ter 1 collects reference trajectories obtained with (μ1, μ2, μ3) =
{(0.30, 0.75, 0.10), (0.20, 0.85, 0.08), (0.10, 0.95, 0.05)}, Cluster 2
collects reference trajectories obtained with (μ1, μ2, μ3) =
(2.00, 0.10, 1.50), and Cluster 3 collects reference trajectories
obtained with (μ1, μ2, μ3) = {(1.20, 0.30, 1.00), (1.60, 0.20, 1.25)}
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Fig. 11 Number of times unoccupied voxels in the given occu-
pancy map are traversed by the UAV. These simulation results have
been achieved by assuming that the pair (μ4, μ5) is fixed and
the triplet (μ1, μ2, μ3) takes values in S1. As in Fig. 10, imme-
diately after take-off and short before traversing the door to the
goal point set, all reference trajectories are substantially overlapping.

Furthermore, all trajectories group in three main clusters. Cluster
1 collects tactical reference trajectories prevalently obtained with
(μ4, μ5) = {(0.50, 0.80), (0.40, 0.90), (0.30, 1.00)}, Clusters 2 col-
lects reference trajectories prevalently obtained with (μ4, μ5) =
{(1.00, 0.001), (0.90, 0.10)}, and Clusters 3 collects reference trajecto-
ries prevalently obtained with (μ4, μ5) = {(0.90, 0.10), (0.80, 0.70)}

Figure 12 shows the results of these flight tests. All
reckless reference trajectories cluster upon passing the
closest wall: the standard deviation around the average
reckless trajectory is 0.42m. Conversely, tactical trajectories
are considerably more spread: the standard deviation
around the average tactical trajectory is 2.64m. Therefore,
consistently with our analysis in Sections 7.2 and 7.3,
this analysis suggests that if a reckless reference trajectory
is to be produced, then the proposed guidance system
exhibits a more predictable behavior. Conversely, with the
tactical parameter set, all reference trajectories converge
immediately before passing through the only door to the
goal set. Thus, if a tactical reference trajectory is to be
produced, then the proposed guidance system exhibits a less
predictable behavior.

7.5 Taxonomy of Flight Behaviors Varying
the OccupancyMap

In this section, we present the results of two sets of software-
in-the-loop simulations aimed at establishing a taxonomy
of flight behaviors as a function of the density of occupied
voxels. For both sets of simulations, we considered a 20 ×
20 × 6m environment, and we let r0 = [1.00, 1.00, 1.00]Tm
and G = {[19.00, 17.00, 1.60]T}m. For a set of simulations,
we let μ2 = 0.40, μ4 = 1.00, and μ5 = 0.01 to produce
reckless trajectories, and for the other set of simulations,
we let μ2 = 0.75, μ4 = 0.80, and μ5 = 0.50 to produce
tactical trajectories; the remaining user-defined parameters
were the same as in Section 7.1. In both sets of simulations,
the first test was performed assuming that the environment

Fig. 12 Fifty reckless and fifty
tactical reference trajectories
obtained by iteratively varying
the UAV’s initial position
r0 = [rx,0, ry,0, 0.6]T, where
(rx,0, ry,0) are evenly spaced in
[2.0, 10.0]m ×[1.0, 4.0]m. In
both sets of simulations, the goal
set is given by G = {[1.0, 19.0,

0.6]T}m. It is apparent that
reckless trajectories are highly
clustered around the shortest
trajectory and hence, are more
predictable, whereas tactical
trajectories are more spread and
hence, less predictable
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was free of obstacles. Successively, at random locations, we
iteratively introduced new obstacles, whose size randomly
varied from 0.20 × 0.20 × 0.20m to 4.00 × 4.00 × 6.00m,
and we let the proposed guidance system compute both a
reckless and a tactical reference trajectory; the obstacles’
maps were produced by a Matlab script employing a normal
distribution, whose seed is Matlab’s default global stream.
For both sets of simulations, the maximum density of
occupied voxels considered in both sets of simulations was
30% since for larger densities of randomly occupied voxels,
it was impossible to find viable trajectories.

Figure 13 shows both a plot of the length of UAV’s
reckless reference trajectories, averaged over the set of
reckless reference trajectories computed at previous itera-
tions, and a plot of the length of UAV’s tactical reference
trajectories, averaged over the set of tactical reference tra-
jectories computed at previous iterations. Averaging the
trajectory length over the set of trajectories produced at pre-
vious iterations allows to capture the effect of the density of
the voxel map on the UAV’s behavior, irrespectively of the
effect produced by individual obstacles introduced at each
iteration. At the first iteration, in the absence of obstacles,
both the reckless and the tactical trajectories were over-
lapping straight lines joining the initial condition r0 to the
goal set G. For a density of occupied voxels in the interval
[0, 24.9]%, the average length of the reckless trajectories
grew almost linearly at a rate of 1.40m per unit density. Over
the density interval [0, 1.3]%, the average length of the tac-
tical trajectories grew almost linearly at a rate of 23.82m
per unit density since the few obstacles introduced at the
first iterations attracted the UAV more markedly. Over the
density interval [1.3, 10.7]%, the average length of the tacti-
cal trajectories decreased at a rate of 3.26m per unit density
since the number of scattered occupied voxels increased and
multiple obstacles nullified their attractive effect recipro-
cally. Over the density interval [10.7, 24.9]%, the average

length of the tactical trajectories grew almost linearly at a
rate of 1.25m per unit density; remarkably, over the same
interval, the average length of the tactical trajectories grew
at a rate of 1.23m per unit density. From this analysis,
we deduce that over an extended density interval, such as
[0, 24.9]%, reckless trajectories are less influenced by the
occupancy map, except for the problem of avoiding obsta-
cles, and hence, the average trajectory length grows linearly.
Conversely, over the same interval, tactical trajectories are
more influenced by the occupancy map, especially for low
levels of obstacles’ density. Finally, over the density interval
[24.9, 30.0]%, the average length of the reckless trajectories
decreased almost linearly at a rate of 0.92m per unit density
and the average length of the reckless trajectories decreased
almost linearly at a rate of 0.89m per unit density; this syn-
chronous decrease of the average length of the reckless and
tactical trajectories was due to the large number of occupied
voxels, which force the UAV to fly over several obstacles to
reach the goal set.

Figure 14 shows the 448 reckless and tactical trajectories
produced as part of proposed study both in the horizontal
and vertical planes; obstacles are omitted for clarity of
presentation. It is apparent that reckless trajectories cluster
with one another both in the horizontal and the vertical
planes, whereas tactical trajectories are spread both in
the horizontal and vertical planes. Therefore, consistently
with the analyses presented in Sections 7.2–7.4, reckless
trajectories are more predictable than tactical ones.

8 Flight Tests Results

In this section, we present the results of three sets of flight
tests. The first set of tests shows the applicability and some
of the capabilities of the proposed guidance system. The
second set of tests aims to show the repeatability of the

Fig. 13 Average length of the
UAV’s reckless and tactical
reference trajectories as
functions of the density of
randomly generated obstacles in
a given environment. Over 448
simulations, reckless trajectories
are consistently shorter than
tactical trajectories. For low
values of the density of the
obstacles’ set, the average length
of the reckless trajectories grows
suddenly, since the effect of the
few obstacles is stronger. Over
the interval [10.7, 30.0]% the
average length of the reckless
and of the tactical trajectories
follow similar trends
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Fig. 14 Reckless and tactical
reference trajectories obtained
by iteratively introducing
randomly generated obstacles in
a given environment; obstacles
are omitted for clarity of
presentation. Over 224
simulations, reckless trajectories
appear to cluster both in the
horizontal and the vertical
planes, whereas over 224
simulations, tactical trajectories
are more spread than their
reckless counterparts both in the
horizontal and the vertical plane.
Therefore, reckless trajectories
and more predictable than
tactical ones

flight test results. The third set of tests has two goals,
namely examining the effect of varying initial conditions in
a given environment and for a fixed goal point and showing
the consistency between flight test and software-in-the-loop
simulation results. For these three sets of flight tests, both
a reckless and a tactical set of parameters are employed.
To perform these tests, no map of the environment was
pre-stored on the UAV’s single-board computer.

8.1 Validation of the Proposed Guidance System
through Flight Tests

In this section, we present the result of two flight test
aimed to show how the proposed guidance system allows
a quadcopter to reach the given goal set while exhibiting a
reckless and a tactical behavior; videos of both flights can
be found at [57]. In both flight tests, the UAV’s mission is
to take off from a given initial position, traverse a cluttered
environment without prior knowledge of obstacles’ set,
avoid colliding with obstacles, and finally reach the goal
set given by a disk of radius 1.75m, which is centered at
a point specified with respect to the take-off position. The
quadcopter takes off in a high-bay area and its goal set
is located in an office space, which is accessible from the
high-bay area through a 0.8m wide door. Multiple obstacles
of different size and shape have been placed in the high-
bay area. In order to demonstrate the results of a reckless
flight test, the UAV’s initial position and yaw angle have
been chosen so that the goal set is visible from the take-off
point through a cone of 3.25◦ aperture. This way, the most
reckless trajectory consists of a straight line from the UAV’s
take-off position to the goal set. However, the proposed
guidance system guarantees successful mission completion
also in the case the goal set is not visible from the take-off
position.

Figures 15 and 16 show the results of both flight tests in
three dimensions and two dimensions, respectively. In both
tests, the UAV takes off from the point [3.00, −3.60, 1.00]T

in the reference frame generated by the navigation system,
which is denoted by a green hexagon, and its goal
set is denoted by a salmon-colored disk centered at
[12.00, −7.60, 0.20]T. Furthermore, in both flight tests we
set umax = [1.50, 0.25, 0.25, 0.25]T, umin = −[0, 0.25,

0.25, 0.25]T, ψmax = 43.00◦, nt = 100, ΔT = 0.01s,

Fig. 15 Three-dimensional view of the experimental results. The take-
off position is indicated by a green hexagon, obstacles are captured by
means of a wire-frame representation, and the goal set is denoted by
the salmon-colored disk. The UAV’s reckless trajectory is represented
by a solid red line, and its tactical trajectory is represented by a
dashed blue line. The ellipsoids used to form the collision avoidance
constraints are represented at t = 0.0s, t = 27.3s, and t = 33.1s for
the reckless flight, and t = 0.0s, t = 13.0s, and t = 43.9s for the more
tactical flight. Finally, timestamps are shown at multiple points along
the UAV’s trajectories. A video of these flight tests can be found at [57]
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Fig. 16 View of the experimental results in the horizontal plane. The
UAV’s heading angle is captured by the UAV’s roll axis, which is
represented by orange arrows at multiple time instants. Purple arrows
show the UAV’s pitch axis

R̃r = Rr,f = 700 13, R̃r,u = 03×4, R̃u = blockdiag(10,

200, 200, 300), q̃r = qr,f = 03, q̃u = 04, μ1 = 0.10,
μ6 = 1.00, μ7 = 1.00, μ8 = 0.00, ν1 = 2.00, ν2 = 10.00,
ν3 = 0.45, and ε = 10−3; the constraint ψmax captures
half of the field-of-view angle of the depth camera, which
is responsible for mapping the environment. Furthermore,
in both tests, the ellipsoid Ek(·) was sampled by setting
l = 24. The parameters used to induce a reckless behavior
were μ2 = 0.20, μ3 = 0.20, μ4 = 1.00, μ5 = 0.01,
and μ9 = 0.30. The parameters used to induce a tactical
behavior were μ2 = 0.90, μ3 = 0.50, μ4 = 0.80, μ5 =
0.40, and μ9 = 0.40.

While following the more reckless trajectory, the UAV
flew toward a box placed in front of the door to the office
space, where the goal set was located, and then proceeded
along a substantially straight path to the goal set completing
its mission in 40.9s. It is worthwhile to note that the
UAV entered the room, where the goal set was located,
by traversing the center of the doorway. While following a
more tactical trajectory, the UAV immediately sought cover
by flying towards one of the walls of the high-bay area. At
t = 27.3s, the UAV flew over a box and the navigation
system improved the map of the environment. Thus, the
guidance system computed both a reference path and a
reference trajectory that were considered as more cautious;
this re-planning produced the loop shown in Figs. 15 and
16. Then, the UAV continued coasting the obstacles’ set and
proceeded through the doorway completing its mission in
59.0s. It is worthwhile to note that, by following this more
tactical trajectory, the UAV coasted the door frame.

At each time step, the ellipsoids used to generate
the collision avoidance constraints were tangent to some
obstacles such as walls, boxes, or the floor. By coasting the
obstacles’ set closely, more tactical flight behaviors imply
smaller ellipsoids, and hence, the reference trajectory must
be computed more frequently than by flying along more
reckless trajectories.

The UAV’s average distance from the obstacles’ set when
behaving more recklessly was 1.34m, whereas the UAV’s
average distance from the obstacles’ set when behaving
more cautiously was 0.96m. Hence, when following the
more tactical path, the UAV was 29% closer the obstacles’
set than than when behaving more recklessly. The UAV’s
maximum distance from the obstacles’ set when behaving
recklessly was 2.55m, whereas the UAV’s maximum
distance from the obstacles’ set when behaving tactically
was 2.34m. The distance traveled by the UAV along the
reckless and tactical trajectories were 12.82m and 17.08m,
respectively. On average, when behaving more cautiously,
the UAV moved approximately 10% slower than when
behaving more recklessly. The average height of the UAV
while behaving more cautiously is 0.30m, whereas the
average height of the UAV while behaving more recklessly
is 0.41m. Hence, as predicted in Section 7, if the UAV is
tasked to behave more tactically, then, in average, it is closer
both to the obstacles’ set and the ground and travels a longer
distance. Conversely, if the UAV is tasked to behave more
recklessly, then, in average, it is further from the obstacles’
set and the ground and travels a shorter distance.

8.2 Analysis of the Repeatability of Flight Tests

In this section, we present the results of flight tests, where
a reckless parameter set and a tactical parameter set are
tested 5 times each to determine the predictability of the
UAV’s trajectories and establish repeatability of results
employing the proposed guidance system. The UAV’s
mission is to start from r0 = [3.6, 1.8, 1.0]Tm, traverse
an unknown environment, and reach the goal set G =
{[11.8, 14.2, 1.6]T}m with a reckless or tactical parameter
set. To induce a more reckless behavior, we set μ1 = 1.00,
μ2 = 0.40, μ3 = 0.20, μ4 = 1.00, and μ5 = 0.01,
and to induce a more tactical behavior, we set μ1 = 0.20,
μ2 = 0.75, μ3 = 0.10, μ4 = 0.80, and μ5 = 0.50;
the remaining user-defined parameters are the same as in
Section 8.1.

Figure 17 shows both in the horizontal and the vertical
planes the 10 reckless and tactical trajectories produced as
part of the proposed study, and Table 11 presents some
statistical data of these trajectories. From Fig. 17 we deduce
that reckless reference trajectories tend to cluster around
the shortest trajectory and approach the goal point through
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Fig. 17 Ten flight test results to determine the predictability of the
UAV’s trajectories and establish repeatability of results employing the
proposed guidance system. The UAV trajectories from five flight tests
performed employing a more reckless parameter set are shown in the
left image, and the trajectories from five flight tests performed employ-
ing a more tactical parameter set are shown in the right image. In both
cases, the take-off location is r0 = [3.6, 1.8, 1.0]Tm and the goal set
is G = {[11.8, 14.2, 1.6]T}m; approximately 11% of the voxels are

occupied. Time stamps at t = 15s and t = 35s are provided to compare
the UAV’s velocity for each flight test and each parameter set. Reckless
trajectories are consistently shorter, traversed in less time, and closer
to the obstacles’ set than tactical trajectories. Moreover, reckless tra-
jectories tend to cluster around the shortest trajectory and approach the
goal point through a narrow cone, whereas tactical reference trajecto-
ries are more scattered and approach the goal point through a wider
cone

a narrow cone, whereas reckless reference trajectories are
more scattered and approach the goal point through a wider
cone. Therefore, consistently with the results presented in
Sections 7.2–7.5, reckless trajectories are more predictable
than tactical ones. Furthermore, from Table 11 we deduce
that reckless trajectories are shorter, traversed in less
time, and further from the obstacles’ set O than tactical
trajectories. Therefore, as anticipated in Section 7, reckless
trajectories consistently aim to the goal set more directly
than tactical trajectories. Finally, by the standard deviation
about the average reckless trajectory and the average tactical
trajectory, we deduce that reckless trajectories are more
repeatable than tactical ones. This is due to the fact that,
although although the parameters’ set, the environment, the
UAV’s initial position, and the goal set are identical for
each set of flight tests, small variations in the UAV’s yaw
angle lead the onboard navigation system to detect different

Table 11 Statistical data for the flight tests shown in Fig. 17

Reckless Trajectory Tactical Trajectory

Average trajectory length 17.20m 21.40m

Maximum trajectory length 18.51m 23.99m

Std. Dev. 0.97m 2.08m

about average trajectory

Average distance from O 0.91m 1.20m

Average flight time 53.69s 65.04s

Maximum flight time 72.54s 75.50s

environmental features at the boundaries of the depth
camera’s field-of-view and hence, produce slightly different
occupancy maps. Since tactical trajectories are attracted by
the obstacle’s set more than reckless trajectories, tactical
trajectories are less repeatable.

8.3 Analysis of the Effect of Varying the Take-off
Position

In this section, we analyze the results of 10 flight tests
to assess both the effect of varying the UAV’s take-off
location on reckless and tactical trajectories and the
consistency of the flight tests with the numerical simula-
tions. Specifically, five flight tests have been performed
by choosing the same set of reckless parameters as in
Section 8.2 and the initial conditions rT

0 ∈ R0, where R0 �
{[4.0, 5.0, 1.4], [4.0, 3.5, 1.4], [4.0, 2.2, 1.4], [5.4, 2.2, 1.4],
[7.8, 2.2, 1.4]}, and five flight tests have been performed
by choosing the same set of tactical parameters as in
Section 8.2 and rT

0 ∈ R0. The environment and the goal
point for these flight tests are the same as in Section 8.2.

Figure 18 shows both in the horizontal and the vertical
planes the flight tests results produced as part of the
proposed study, and Table 12 presents some statistical
data of these trajectories. Consistently with the results
anticipated in Section 7.4, fixed the initial condition,
reckless trajectories are shorter and traversed in more time
than tactical trajectories. Moreover, four of the five reckless
trajectories are highly clustered and approach the goal
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Fig. 18 Ten flight test results to analyze the effect of varying the
UAV’s take-off location on reckless and tactical trajectories; both the
goal set and the obstacles’ set are the same as in Fig. 17. Fixed the
initial condition, reckless trajectories are consistently shorter and tra-
versed in more time than tactical trajectories. Moreover, four of the five

reckless trajectories are highly clustered and approach the goal point
through a narrow cone and hence, are more predictable. All tactical
reference trajectories are more scattered and approach the goal point
through a wider cone and hence, are less predictable

point through a narrow cone, whereas all tactical reference
trajectories are more scattered and approach the goal point
through a wider cone. Therefore, consistently with the
results presented in Section 7, reckless trajectories are more
predictable than tactical ones.

Figure 19 shows both in the horizontal and the vertical
planes the results of software-in-the-loop tests performed
using the same voxel map and the same user-defined param-
eters as for the flight tests shown in Fig. 18. Similarly to
the flight test results, four of the five simulated reckless tra-
jectories overlap considerably and approach the goal point
through a narrow cone, and all tactical trajectories are less
clustered and approach the goal point through a wider cone.
Table 13 presents some statistical data of these trajectories.
For both reckless and tactical trajectories, the average tra-
jectory length, the average flight time, and the maximum
flight time for the software-in-the-loop tests are similar to
the average trajectory length, the average flight time, and

Table 12 Statistical data for the flight tests shown in Fig. 18

Reckless Trajectory Tactical Trajectory

Average trajectory length 145.81% 151.16%

Maximum trajectory length 156.02% 171.13%

Average distance from O 2.54m 1.91m

Average flight time 49.39s 46.27s

Maximum flight time 63.38s 67.87s

Both the average trajectory length and the maximum trajectory length
are normalized over the length of the segment joining the UAV’s
take-off position to the goal set

the maximum flight time for actual flight tests, respectively.
For reckless trajectories, the maximum trajectory length in
software-in-the-loop simulations is comparable to the max-
imum trajectory length in flight tests. However, for tactical
trajectories, the maximum trajectory length in software-in-
the-loop simulations is one-third larger than the maximum
trajectory length in flight tests, which confirms the lower
predictability of tactical flights. Therefore, software-in-the-
loop simulation are useful to predict average behaviors of
the proposed guidance system, although the variability of
results is larger for tactical trajectories.

9 Comparisonwith theMAVVoxblox Planner

In this section, we present the outcomes of two sets of
software-in-the-loop simulations performed using the same
single board computer as in Section 7 and compare the
performance of the proposed guidance system with those
of the MAV Voxblox planner [68, 69], a state-of-the-art
guidance system for multi-rotor UAVs. The scope of this
comparative analysis is to showcase the ability of the
proposed guidance system to effectively outline reference
trajectories in unknown environments over an advanced
algorithm employing a similar architecture. MAV Voxblox
has been chosen as it comprises both an optimization-
based path planner and a model predictive control law for
trajectory planning.

In both sets of simulations, we compute a reference
trajectory employing MAV Voxblox planner and a tactical
and a reckless reference trajectory employing the proposed
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Fig. 19 Ten software-in-the-
loop test results performed
employing the same voxel map
and the same user-defined
parameters as for the flight tests
shown in Fig. 18. Similarly to
the flight test results, four of the
five simulated reckless
trajectories overlap considerably
and approach the goal point
through a narrow cone, and all
tactical trajectories are less
clustered and approach the goal
point through a wider cone. For
additional details, see Table 13

guidance system and the same user-defined parameters as
in Section 7.1. Furthermore, both sets of simulations require
the UAV to reach G = {[19.0, 1.0, 1.0]Tm}, while traversing
a maze provided in [68]. For the first set of simulations,
the UAV takes off from r

(1)
0 = [1.0, 11.0, 1.0]Tm, and for

the second set of simulations, the UAV takes off from from
r
(2)
0 = [5.0, 15.0, 1.0]Tm. In both sets of simulations, it is

assumed that the UAV’s onboard cameras detect obstacles
located at a distance that is less or equal to 5m from the UAV.
However, consistently with the work presented in [68, 69],
in simulations performed using the MAV Voxblox planner,
it is assumed that the guidance system discovers occupied
voxels within a ball centered in the UAV, whereas in
simulations performed using the proposed guidance system,
it is assumed that the guidance system discovers occupied
voxels within a cone, whose apex is at the UAV’s current
position. The proposed guidance system prescribes that the
UAV’s velocity at the waypoints given by the path planner
is given by [0.5, 0.5, 0.0]Tm/s, whereas the MAV Voxblox
planner does not impose the UAV’s reference velocity at

any point and constrains the maximum velocity to 2m/s
and the maximum acceleration to 2m/s2. Compared to the
proposed guidance system, this feature gives MAV Voxblox
additional freedom to find viable reference trajectories.

Figure 20 shows the UAV’s trajectories produced as
part of both sets of numerical simulations; dashed lines
with square markers show reckless trajectories produced
employing the proposed guidance system, dashed lines
with round markers show tactical trajectories produced
employing the proposed guidance system, and solid lines
show trajectories produced employing the MAV Voxblox
planner. Table 14 presents statistical data of the reference
trajectories shown in Fig. 20. Although all trajectories
take similar routes to reach the goal set from a given
take-off position, tactical reference trajectories produced
by the proposed guidance system were closest to the
obstacles’ set, and reference trajectories produced by the
MAV Voxblox planner were furthest from the obstacles’
set. Indeed, the MAV Voxblox planner is not designed
to produce tactical reference trajectories. Furthermore, the

Table 13 Statistical data for
the flight tests shown in Fig. 19 Simulated Difference Simulated Difference

Reckless with Tactical with

Trajectory Flight Test Trajectory Flight Test

Average trajectory length 150.63% 4.82% 164.28% 13.12%

Maximum trajectory length 165.88% 9.85% 203.30% 32.17%

Average flight time 53.69s 4.30s 48.37s 2.27s

Maximum flight time 61.00s −2.28s 56.41s −11.46s

Both the average trajectory length and the maximum trajectory length are normalized over the length of the
segment joining the UAV’s take-off position to the goal set. The third and fifth columns present the difference
between the trajectory produced through simulations and the trajectory from flight tests shown in Fig. 18.
exhibiting how the trajectories produced by simulations emulates the trajectories produced by flight tests
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Fig. 20 Software-in-the-loop
simulation results to compare
the capabilities of the proposed
guidance system (blue lines for
reckless trajectories and green
lines for tactical trajectories)
with MAV Voxblox (MV)
planner (red lines) [68, 69]. The
take-off locations are given by
r
(1)
0 = [1.0, 11.0, 1.0]T and

r
(2)
0 = [5.0, 15.0, 1.0]T. The

goal set is given by
G = {[19.0, 1.0, 1.0]T}. The
MAV Voxblox planner guidance
system requires several attempts
to escape from densely occupied
areas and, on one occasion, lead
the UAV to the ground. The
proposed guidance system did
not incur in the these problems

trajectory length was shortest for reference trajectories
produced by the proposed guidance system with a reckless
parameter set and longest for trajectories produced by the
MAV Voxblox planner. Thus, the MAV Voxblox planner
appears to produce longer reference trajectories without
any specific reasons. The MAV Voxblox planner required
several attempts to traverse the densely occupied areas
marked by black ellipses in Fig. 20. The proposed guidance
system did not require multiple attempts to find a solution
to the trajectory planning problem both when tasked with
finding reckless trajectories and when tasked with finding
tactical trajectories. Finally, on several occasions, the MAV
Voxblox planner lead the UAV to the ground, whereas the
proposed guidance system never incurred in this problem.

10 Conclusion

This paper presented an innovative guidance system that
allows autonomous vehicles to exhibit a tactical behavior,
while operating in unknown, potentially hostile environ-
ments. This guidance system solely relies on information
on the environment provided by a navigation system and
deduced from a stereo depth camera, a tracking camera,
and an inertial measurement unit. This guidance system
has been customized for Class I quadcopters, and its effi-
ciency has been tested by means of numerical simulations
and flight tests in realistic scenarios.

One of the novelties of the proposed guidance system
resides in the fact that it allows an autonomous vehicle

Table 14 Statistical data for the flight tests shown in Fig. 20

r
(1)
0 r

(2)
0

Proposed Proposed Voxblox Proposed Proposed Voxblox

Reckless Tactical Planner Reckless Tactical Planner

Trajectory length 136.37% 149.21% 236.72% 140.46% 154.31% 233.87%

Avg. distance from O 0.69m 0.69m 0.74m 0.93m 0.67m 1.33m

Max distance from O 1.41m 1.39m 1.63m 2.29m 1.34m 2.37m

The trajectory length is normalized over the Euclidean distance from the respective take-off positions to the goal set. Tactical reference trajectories
produced by the proposed guidance system are closest to the obstacles’ set, and reference trajectories produced by the MAV Voxblox planner are
furthest from the obstacles’ set. The trajectory length was shortest for reference trajectories produced by the proposed guidance system with a
reckless parameter set and longest for trajectories produced by the MAV Voxblox planner. Thus, the MAV Voxblox planner appears to produce
reference trajectories that are longer without any specific reasons
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to move in a tactical manner without any prior determin-
istic or stochastic knowledge of the obstacles’ and the
opponents’ location. This tactical behavior is achieved by
exploiting obstacles, seeking shelter from opponents that are
able to acquire targets in direct line-of-sight, and regulat-
ing the UAV’s velocity as a function of the distance from
the obstacles’ set. An additional novelty of the proposed
guidance system lies in its architecture, which comprises an
optimization-based path planner, an algorithm to produce
collision avoidance constraint sets, whose boundaries are
captured by affine functions, that are tangent to the obsta-
cles’ set, and an optimal control-based trajectory planning
algorithm. Soft constraints allow to anticipate hard con-
straints and mitigate the sudden increases in control effort
associated with the activation of hard constraints.

Numerical simulations illustrated key features of the
proposed guidance system and allowed to produce a
taxonomy of flight behaviors as a function of the most
influencing user-defined parameters employed to induce
a reckless or a cautious behavior, the take-off locations,
and the occupancy map. Flight tests demonstrated the
applicability of the proposed results and allowed to verify
both the repeatability of flight tests and the sensitivity
of the proposed guidance systems to variations in the
UAV’s take-off location. Both the numerical and the flight
tests reveal that more reckless trajectories are also more
predictable and hence, more vulnerable, than more tactical
ones. Furthermore, when set to exhibit a more tactical
behavior, the UAV is more sensitive to smaller variations in
the environmental conditions.

Numerical simulations compared both the applicability
and the performance of the proposed guidance system to
those of the recently developed MAV Voxblox planner.
Furthermore, numerical simulations demonstrate the higher
computational efficiency of the proposed algorithm to
determined convex, collision-free sets over similar state-of-
the-art algorithms such as IRIS and SFC.
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