
Journal of Intelligent & Robotic Systems
https://doi.org/10.1007/s10846-020-01260-7

Model Reference Adaptive Control of Switched Dynamical Systems
with Applications to Aerial Robotics

Robert B. Anderson1 · Julius A. Marshall1 · Andrea L’Afflitto1 · James M. Dotterweich2

Received: 1 January 2020 / Accepted: 4 September 2020
© Springer Nature B.V. 2020

Abstract
This paper presents an adaptive control law for unknown nonlinear switched plants that must follow the trajectory of user-
defined linear switched reference models. The effectiveness of the proposed control architecture is proven in two alternative
frameworks, that is, analyzing Carathéodory and Filippov solutions of discontinuous differential equations. Numerical and
experimental data verify the applicability of the theoretical results to problems of practical interest. The proposed numerical
simulation involves the design of a model reference adaptive control law to regulate the roll dynamics of a reconfigurable
delta-wing aircraft. The proposed flight tests involve an aerial robot tasked with autonomously mounting a camera of
unknown inertial properties to a vertical surface.

Keywords Model reference adaptive control · Switched dynamical systems · Carathéodory solutions · Filippov solutions ·
Aerial robots

1 Introduction

The dynamics of numerous mechanical and electronic sys-
tems are subject to instantaneous changes and are best
captured by switched dynamical systems, that is, differential
equations with discontinuous right-hand sides. Examples
of switched dynamical models involve mechanical systems
subject to velocity jumps and force discontinuities [6, 45].
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Furthermore, the closed-loop dynamics of systems regu-
lated by discontinuous control algorithms such as time-
optimal control laws [7, pp. 110-117], variable structure
control laws [27, pp. 552-579], [14, 34, 52], and supervi-
sory control architectures [29, 41, 42, 54] may be captured
by switched models. Substantial complexity in the analysis
and control synthesis of discontinuous dynamical systems
is given by the fact that their solutions may not exist or
may not be unique [27, Ch. 3]. Furthermore, the notion of
solution of a switched differential equation is not univocal.
Indeed, Carathéodory [8], Filippov [16], Krasovskii [30],
and Euler [12] solutions, to name a few, have been intro-
duced to better capture the behavior of different classes of
discontinuous dynamical systems; for additional details, see
[13, 20, 23, 49] and the references therein.

In this paper, we design an adaptive control law for
unknown nonlinear switched plants so that their trajectories
track the trajectories of user-defined switched reference
models. The mapping between the switching signal and the
plant dynamics is considered as unknown. The switching
signal is assumed to be a known function of time since in
model reference adaptive control, the reference model is
user-defined and independent of the plant state.

The effectiveness of the proposed model reference adap-
tive control law is proven in two alternative frameworks, that
is, by considering Carathéodory and Filippov solutions of
discontinuous differential equations. These two frameworks
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have been chosen since both Carathéodory and Filippov
solutions of discontinuous dynamical systems are usually
more suitable to analyze the dynamics of mechanical sys-
tems. Indeed, both Carathéodory and Filippov solutions
are absolutely continuous and hence, have bounded varia-
tions over bounded time intervals, and their time derivatives
exist almost everywhere [50, pp. 127-130]. Applying the
Carathéodory framework, we prove that if the switching sig-
nal is characterized by an arbitrarily small, but non-zero,
dwell-time, then solutions of both the trajectory tracking
error’s and the adaptive gains’ dynamics exist, are unique,
and are defined almost everywhere over the semi-infinite
time horizon, and the plant trajectory asymptotically con-
verges to the reference model’s trajectory. Employing the
Filippov framework, we prove that if the switching signal
is Lebesgue integrable and has countably many points of
discontinuity, then maximal solutions of both the trajec-
tory tracking error and the adaptive gains dynamics exist
and are defined almost everywhere on the semi-infinite time
horizon, and the trajectory tracking error converges to zero
asymptotically. Considering Filippov solutions, the switch-
ing signal may have zero dwell-time, but the uniqueness
of the solutions of the trajectory tracking error’s and the
adaptive gains’ dynamics cannot be proven.

The theoretical framework employed in this paper
does not allow to control plants whose dimensions vary
as arbitrary functions of time. However, the proposed
framework allows to address those problems, wherein the
plant’s dynamics is in partial-state equilibrium [19, Def.
4.1] for some values of the switching signal. In these
cases, the dynamics of those components of the state vector
that are at equilibrium can be disregarded, and only the
dynamics of those components of the state vector that are
not at equilibrium is regulated by applying the proposed
framework.

To the authors’ best knowledge, this is the first paper to
deduce model reference adaptive control laws for unknown
nonlinear switched plants and switched reference models
employing the Carathéodory and the Filippov frameworks.
Furthermore, the proposed model reference adaptive control
laws are unique for their ability to regulate unknown
nonlinear plants without any restrictions on the dwell-
time. The design of model reference controls for linear
switched systems was addressed in [55, 57]. The authors
in [61] proposed an H∞-based adaptive control law for
switched linear dynamical systems. Supervisory control
architectures involving multiple adaptive control laws have
been proposed in [22, 28, 39, 40, 43, 51, 58, 59] to regulate
linear uncertain dynamical systems, while guaranteeing
user-defined levels of performance in the transient regime.
In [17, 26, 44], the authors devised an adaptive sliding
mode control law for switched dynamical systems that are
linear in the parameters and subject to external disturbances,

and proved the validity of their results in the Filippov
and the Krasovskii frameworks. The design of model
reference adaptive control laws for uncertain nonlinear
plants was presented in [60] employing the average dwell-
time method under asynchronous switching, and [56]
analyzing classical solutions of the closed-loop system.
An adaptive controller for nonlinear systems, which does
not rely on any restrictions on the dwell-time, has been
presented in [35]. However, this result is achieved by
assuming that the linear portion of the plant dynamics is
the same for all switched systems. An adaptive control law
for nonlinear switched systems with arbitrary switching is
presented in [10]. However, these results apply if there exists
a diffeomorphism such that the plant dynamics is equivalent
to a cascaded dynamical system.

The effectiveness of the proposed results is firstly
verified numerically. Specifically, we present a numerical
example that involves the design of a control law for
the roll dynamics of a delta-wing aircraft that can switch
between two alternative configurations, namely a stable
and less responsive configuration and an unstable and
more responsive configuration. Reconfigurable aircraft are
particularly advantageous for those applications, wherein
the vehicle must operate in multiple flight regimes by
rapidly changing its geometric and aerodynamic properties
[4, 21, 46, 48, 53]. However, rapid or instantaneous
changes in the aircraft configuration or the reference model
underlying the control architecture may induce instabilities.
The robustness of the proposed model reference adaptive
control law is challenged by assuming that the aircraft
aerodynamic coefficients are unknown in all configurations
and by switching arbitrarily fast both the plant’s and
the reference model’s dynamics. Control algorithms for
morphing-wing aircraft have been investigated in [9] using
an H∞ control framework, [18] employing a backstepping
approach, and [25] using a variable structure switched
control law. Furthermore, a supervisory control architecture
has been presented in [25] to regulate a vertical take-off and
landing aircraft modeled as switched dynamical systems.
None of the control techniques for uncertain, switched,
nonlinear plants that we surveyed is suitable to regulate
plants in the same form as the dynamical model in the
proposed numerical example. Thus, the performance of the
proposed model reference adaptive control law is compared
to the performance of the classical model reference adaptive
control law [33, Ch. 9] obtained considering only one
of the two aircraft configurations. In particular, it is
shown how, considering only the dynamical model for
the less responsive configuration, the classical model
reference adaptive control law is unable to regulate the
plant dynamics, and the trajectory tracking error diverges.
Alternatively, considering only the dynamical model for
the more responsive configuration, the trajectory tracking
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error, the control effort, and the computational time are
considerably larger than the trajectory tracking error, the
control effort, and the computational time achieved by
applying the proposed adaptive law.

The effectiveness of the proposed results is verified
also by means of flight tests. These flight tests involve
an autonomous aerial robot, that is, a tilt-rotor quadcopter
equipped with a robotic arm, whose task is to install a
camera of unknown mass on a vertical surface. The aerial
robot holds the camera by means of a suction cup, and
linear strip fasteners are used to attach the camera to the
vertical surface. A switched dynamical model is employed
to capture the aerial robot’s dynamics. Indeed, as soon as
the robotic arm impacts the vertical surface, the vehicle’s
forward motion is impeded by reaction forces. Furthermore,
while the camera is being installed on the vertical surface,
the aerial robot’s yaw and roll dynamics and lateral motion
are constrained by the suction cup and the linear fabric strip
fasteners.

Flight tests results clearly show that the proposed
model reference adaptive control law guarantees successful
completion of the assigned task despite uncertainties on the
aerial manipulator’s dynamics. The problem of designing
control algorithms for aerial systems interacting with hard
surfaces, such as walls and floors, has been investigated
recently by applying feedback-linearizing control laws
within a hybrid systems framework [1, 37, 38]. It is
worthwhile to remark that, imposing some conditions on
the minimum dwell-time, the results in [1, 37, 38] allow
instantaneous increases of the trajectory tracking error at
switching times, whereas the proposed adaptive control
framework does not restrict the plant’s minimum dwell time
and does not allow instantaneous variations in the trajectory
tracking error. To the authors’ best knowledge, this is the
first paper to verify experimentally a switched adaptive
control framework within the context of aerial robotics.

2Mathematical Preliminaries

2.1 Notation

In this section, we establish some of the notation used in
this paper. Let N denote the set of positive integers,R denote
the set of real numbers, C the set of complex numbers, Rn

the set of n × 1 real column vectors, Rn×m the set of n × m

real matrices, Bε(x) the open ball centered at x ∈ R
n with

radius ε > 0, and ∂Bε(x) the sphere centered at x ∈ R
n

with radius ε.
The indicator function of the set A ⊂ R

n is denoted
by 1A : A → {0, 1} and is defined so that if x ∈ A,
then 1A(x) = 1, and if x /∈ A, then 1A(x) = 0. The
Lebesgue measure of a set S ⊂ R

n×m is denoted by μ(S),

and integrals are in the sense of Lebesgue. A property P

is verified almost everywhere with respect to the Lebesgue
measure μ(·) on a set X ⊆ R

n if there exists N ⊂ X such
that μ(N ) = 0 and P is verified by all x ∈ X \ N . In this
case, we write P is verified for x ∈ X a.e.

The ith vector of the canonical basis of R
n is denoted

by ei,n. The zero vector in R
n is denoted by 0n or 0, the

zero n × m matrix in R
n×m is denoted by 0n×m or 0, and

the identity matrix in R
n×n is denoted by In or I . The

diagonal matrix, whose diagonal entries are given by the
components of z ∈ R

n, is denoted by diag(z). The transpose
of B ∈ R

n×m is denoted by BT, the rank of B is denoted
by rank(B), and the trace of A ∈ R

n×n is denoted by tr(A).
The spectrum of A ∈ R

n×n is denoted by spec(A), and the
eigenvalues of A with minimum real part are denoted by
λmin(A). We write ‖ · ‖ for the Euclidean vector norm and
the corresponding equi-induced matrix norm. Furthermore,
we write ‖·‖F for the Frobenius matrix norm. TheKronecker
product of A ∈ R

n×m and B ∈ R
l×p is denoted by A ⊗ B.

2.2 Fundamentals of Switched Dynamical Systems –
Carathéodory Framework

In the following, we recall fundamental properties of the
nonlinear dynamical system with time-dependent switching

ẋ(t) = fσ(t)(t, x(t)), x(t0) = x0, t ≥ t0, (1)

where fs : [t0, ∞) × D → R
n, s ∈ �, � ⊂ N is bounded

and denotes the set of switching indexes, the set D ⊆ R
n

is open, connected, and such that 0 ∈ D, the switching
signal σ : [t0, ∞) → � is piece-wise constant, σ(t) =
limτ→t+ σ(τ) for each t ≥ t0, the sth dynamical model
fs(·, x) is piece-wise continuous in t for all (s, x) ∈ � ×D,
fs(t, 0) = 0 for all (s, t) ∈ � × [t0, ∞), and fs(t, ·) is
Lipschitz continuous in x uniformly in t for all t in compact
subsets of [t0, ∞) and for all s ∈ �; we recall that σ(·) is
piece-wise constant if and only if σ(·) has a finite number of
points of discontinuity on any compact subset of [t0, ∞) and
is constant between two consecutive points of discontinuity.
In this paper, we define switching times as the points of
discontinuity of σ(·).

Definition 1 ([36, p. 10]) A function x : [t0, ∞) → D is a
Carathéodory solution of Eq. 1 if

x(t) = x0 +
∫ t

t0

fσ(τ)(τ, x(τ ))dτ t ≥ t0 a.e. (2)

It is worthwhile to recall that if x(·) verifies (2), then
x(·) is absolutely continuous [50, p. 128]. Furthermore,
Lipschitz continuity of fs(t, ·) for all t in compact subsets
of [t0, ∞) and for all s ∈ � is sufficient to guarantee
the existence of a unique solution of Eq. 1 in the
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sense of Carathéodory [16, Th. 1.2]. Next, we recall the
notion of uniform boundedness of Carathéodory solutions
of nonlinear dynamical systems under time-dependent
switching.

Definition 2 The switched dynamical system (1) is
bounded uniformly in both t0 ∈ [0, ∞) and σ(·) if there
exists γ > 0, which is independent of both t0 ∈ [0, ∞) and
σ(·), such that for every δ ∈ (0, γ ), there exists ε(δ) > 0
such that x0 ∈ Bδ(0)∩D implies that ‖x(t)‖ < ε, t ≥ t0 a.e.
The switched dynamical system (1) is globally bounded
uniformly in both t0 ∈ [0, ∞) and σ(·) if D = R

n and for
every δ > 0 there exists ε(δ) > 0 such that x0 ∈ Bδ(0)
implies that ‖x(t)‖ < ε, t ≥ t0 a.e.

2.3 Fundamentals of switched dynamical systems –
Filippov framework

In the following, we recall fundamental notions concerning
Filippov solutions of the nonlinear dynamical system with
time-dependent switching (1), where the sth dynamical
model fs(·, x), s ∈ �, is Lebesgue integrable and
essentially locally bounded uniformly in t ∈ [t0, ∞) for all
(s, x) ∈ � × D, fs(t, 0) = 0 for all (s, t) ∈ � × [t0, ∞),
and fs(t, ·) is continuous in x uniformly in t for all t in
compact subsets of [t0, ∞) and for all s ∈ �, D ⊆ R

n is
open, connected, convex, and such that 0 ∈ D, the set of
switching indexes � ⊂ N is bounded, and the switching
signal σ : [t0, ∞) → � is Lebesgue integrable and has
countably many discontinuities. It is worthwhile to note
that, while employing the Filippov framework, we do not
assume that σ(·) has a finite number of switching times on
compact subsets of [t0, ∞).

Definition 3 ([16, p. 85]) Let I ⊆ [t0, ∞) be connected
and such that t0 ∈ I. If x : I → D is absolutely continuous
and such that

ẋ(t) ∈ K[fσ(t)](t, x(t)), t ∈ I a.e., (3)

where

K[fs](t, x) �
⋂
δ>0

⋂
μ(N )=0

co (fs (t,Bδ(x) \ N )) ,

(s, t, x) ∈ � × [t0, ∞) × D, (4)

denotes the Filippov regularization of Eq. 1,
⋂

μ(N )=0
denotes the intersection over sets N of measure zero, and
co(·) denotes the convex closure of its argument, then x(·) is
a Filippov solution of Eq. 1. If there do not exist a connected
set I ⊆ [t0, ∞) and a Filippov solution x : I → D of Eq. 1
such that I ⊂ I and x(t) = x(t), t ∈ I a.e., then x : I → D
is a maximal Filippov solution of Eq. 1.

It follows from Theorem 2.7 of [16], the boundedness
of �, the integrability and the essential local boundedness
of fs(·, x), s ∈ �, uniformly in t ∈ [t0, ∞) for all
(s, x) ∈ � × D, and the continuity of fs(t, ·) in x

uniformly in t for all t in compact subsets of [t0, ∞) and
for all s ∈ �, that there exists a solution of Eq. 1 in the
sense of Filippov. Next, we recall the notions of directional
derivatives, generalized directional derivatives, and regular
functions. For the statement of these definitions, let [z, z +
a) � {z + θa, θ ∈ [0, 1)}, (z, a) ∈ R

l × R
l , denote a line

segment in Rl and let

vcone(Q, z)�
{
ξ ∈ R

l : ∃α>0 such that [z, z+αξ)⊂Q
}

(5)

denote the variational cone of Q ⊆ R
l at z.

Definition 4 [5, pp. 63-64],[11, p. 39] Let W : Q → R be
Lipschitz continuous, where Q ⊆ R

l . The right directional
derivative of W(·) at z ∈ Q along the direction of q ∈
vcone(Q, z) is defined as

W ′(z, q) � lim
τ→0+

W(z + τq) − W(z)

τ
,

(z, q) ∈ Q × vcone(Q, z). (6)

The generalized directional derivatives of W(·) at z ∈ Q
along the direction of q ∈ vcone(Q, z) is defined as

W 0(z, q) � lim sup
y→z

τ→0+

W(y + τq) − W(y)

τ
,

(z, q) ∈ Q × vcone(Q, z). (7)

If W ′(z, q) = W 0(z, q) for all q ∈ vcone(Q, z), then W(·)
is regular at z ∈ Q.

Next, we recall the notion of Clarke gradient. This def-
inition is essential to state a generalization of the LaSalle-
Yoshizawa theorem for Lebesgue measurable dynamical
models.

Definition 5 [11, p. 10] Let W : Q → R, where Q ⊆ R
l .

The Clarke gradient of W(·) at z ∈ Q is defined as

∂W(z) �
{
p ∈ R

l : W 0(z, q)≤pTq, ∀q ∈ vcone(Q, z)
}

,

z ∈ Q, (8)

where W 0(·, ·) denotes the generalized directional deriva-
tives of W(·).

In the following, we provide an expression of the
Clarke gradient for Lipschitz continuous functions. For
the statement of this result, recall that, by Rademacher’s
theorem [15, Th. 3.1.6], if V : [t0, ∞)×D → R is Lipschitz
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continuous, then V (·, ·) is differentiable almost everywhere,
and define

V �
{
(t, x) ∈ [t0, ∞)

×D :
[
∂V (t, x)

∂t
,
∂V (t, x)

∂x

]T
is not defined

}
, (9)

as the set wherein V (·, ·) is not differentiable.

Theorem 1 ([11, p. 63]) Let V : [t0, ∞) × D → R

be Lipschitz continuous. The Clarke gradient of V (·, ·) at
(t, x) ∈ [t0, ∞) × D is given by

∂V (t, x) = co

{
lim

i→∞

[
∂V (ti , xi )

∂t
,
∂V (ti , xi )

∂x

]T
: (ti , xi ) → (t, x) ,

(ti , xi ) /∈ V , xi /∈ N , i ∈ N

}
, (t, x) ∈ [t0, ∞) × D, (10)

where N ⊂ D is an arbitrary set of measure zero.

Next, we recall a result that characterizes the total
derivative of a Lipschitz continuous, regular function. For
the statement of this result, consider the nonlinear, time-
varying dynamical system

ẋ(t) = f (t, x(t)), x(t0) = x0, t ≥ t0, (11)

where f : [t0, ∞) × D → R
n is such that f (·, x)

is Lebesgue integrable and essentially locally bounded
uniformly in t ∈ [t0, ∞) for all x ∈ D and f (t, ·) is
continuous in x uniformly in t for all t in compact subsets
of [t0, ∞).

Lemma 1 ([17]) Let x : [t0, ∞) → D denote a solution of
Eq. 11 in the sense of Filippov and let V : [t0, ∞) × D →
R be Lipschitz continuous and regular. Then V (t, x(t)),
t ≥ t0, is absolutely continuous, V̇ (t, x(t)) exists almost

everywhere on [t0, ∞), and V̇ (t, x(t)) ∈ V̇ (t, x(t)), t ∈
[t0, ∞) a.e., where

V̇ (t, x) �
⋂

ξ∈∂V (t,x)

ξT
[
K[f ](t, x)

1

]
,

(t, x) ∈ [t0, ∞) × D. (12)

The next result, which is a direct consequence of
Corollary 1 of [17], guarantees that maximal solutions of
Eq. 1 in the sense of Filippov are defined on I = [t0, ∞),
and provides a generalization of the LaSalle-Yoshizawa
theorem [19, Th. 4.7]. For the statement of this result, let f :
[t0, ∞)×D → R

n be so that fσ(t)(t, x) = f (t, x), (t, x) ∈
[t0, ∞) × D, and the nonlinear differential equation under
time-dependent switching (1) is equivalent to the nonlinear,
time-varying, discontinuous dynamical system (11).

Theorem 2 Consider the nonlinear, discontinuous dynam-
ical systems (1) and (11). Let r > 0 be such that Br (0) ⊂
D, let V : [t0, ∞) × D → R be Lipschitz continu-
ous and regular, let W1, W2, W3 : D → R be such that
both W1(·) and W2(·) are positive-definite and W3(·) is
nonnegative-definite, and let c ∈ (0,min∂Br (0) W1(x)

)
. If

W1(x) ≤ V (t, x) ≤ W2(x), (t, x) ∈ [t0, ∞) × D, (13)

V̇ (t, x(t)) ≤ −W3(x(t)), t ≥ t0 a.e., (14)

where x(·) denotes a maximal solution of Eq. 11 in the sense
of Filippov such that x(t0) ∈ {x ∈ Br (0) : W2(x) ≤ c}, then

x : [t0, ∞) → D is bounded and such that
limt→∞ W3(x(t)) = 0. Furthermore, if D = R

n and
both W1(·) and W2(·) are radially unbounded, then every
maximal solution x(·) of the Filippov regularization of
Eq. 11 is bounded uniformly in both t0 ∈ [0, ∞) and σ(·),
and such that limt→∞ W3(x(t)) = 0 for all x0 ∈ R

n

uniformly in both t0 and σ(·).

It is worthwhile to note that Theorem 2 does not involve
any condition on the dwell-time of the nonlinear dynamical
system (1), that is, on the minimal time interval between any
pair of consecutive switching times [36, p. 56], but relies on
the assumption that the switching signal σ(·) has countably
many discontinuities. As discussed in Remark 1 of [26], if
σ(·) is Lebesgue measurable, but does not have countably
many discontinuities, then Theorem 2 of [26] provides an
alternative to Theorem 2 above.

3Model Reference Adaptive Control
of Switched Dynamical Systems

3.1 Problem formulation

In this section, we design an adaptive control law for
unknown nonlinear plants, whose dynamics are captured
by time-dependent switching among multiple models, so
that their trajectories mimic the trajectories of user-defined
reference models under time-dependent switching.

Specifically, consider the nonlinear plant under time-
dependent switching

ẋ(t) = Aσ(t)x(t) + Bσ(t)

[
u(t) + �T�σ(t)(t, x(t))

]
,

x(t0) = x0, t ≥ t0, (15)

where x(t) ∈ D, t ≥ t0 ≥ 0, denotes the plant’s trajectory,
u(t) ∈ R

m denotes the control input, the set D ⊆ R
n is

open, connected, and such that 0 ∈ D, σ : [t0, ∞) → �

denotes the switching signal and is user-defined, � ⊂ N

is bounded, As ∈ R
n×n is unknown, s ∈ �, Bs ∈ R

n×m

is known, � ∈ R
N×m is unknown, the regressor vector

�s : [t0, ∞) × R
n → R

N is known, Lebesgue integrable,
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and jointly continuous in its arguments, and �s(t, ·) is
Lipschitz continuous in x uniformly in t on compact subsets
of [t0, ∞). Without loss of generality, we assume that �

comprises the first σ positive integers, where σ denotes the
cardinality of �.

The unknown matrix As , s ∈ �, in Eq. 15 captures
parametric uncertainties, and the mapping s �→ As is
considered as unknown. We assume that the pairs (As, Bs)

are controllable for all s ∈ �; although the entries of As

are unknown, this hypothesis can be verified in problems of
practical interest since the structure of As is usually known
[33, p. 281].

The term �T�s(t, x), (s, t, x) ∈ � × [t0, ∞) ×
R

n, in Eq. 15 captures matched uncertainties. Matched
uncertainties may be equivalently captured by �̄T

σ(t)

�̄σ (t)(t, x), (t, x) ∈ [t0, ∞) × R
n, where �̄s ∈ R

N̄s×m, s ∈
�, is unknown, the mapping s �→ �̄s is unknown, and �̄s :
[t0, ∞)×R

n → R
N̄s is known. However, there always exist

� ∈ R
N×m and a regressor vector �s : [t0, ∞) × R

n →
R

N , s ∈ � such that �T�σ(t)(t, x) = �̄T
σ(t)�̄σ (t)(t, x), t ≥

t0. Indeed, let �1, . . . , �p ⊆ �, p ≤ σ , denote partitions of
�. Uncertainties in the mapping s �→ �̄s can be captured by
designing �j , j = 1, . . . , p, as a non-singleton set, and the
dynamical model (15) can be deduced by setting �s(t, x) =[
1�1(s)�̄

T
1 (t, x), . . . , 1�p(s)�̄T

p(t, x)
]T
, (s, t, x) ∈ � ×

[t0, ∞) × R
n, � =

[
�̄T

1 , . . . , �̄T
p

]T
, and N = ∑p

j=1 N̄j .

Regressor vectors are usually designed leveraging on prior
knowledge of the plant dynamics [33, Ch. 9].

Consider also the reference dynamical model under time-
dependent switching

ẋref(t) = Aref,σ (t)xref(t) + Bref,σ (t)r(t),

xref(t0) = xref,0, t ≥ t0, (16)

where the xref(t) ∈ R
n, t ≥ t0, denotes the reference

trajectory, the reference command input r(t) ∈ R
m is piece-

wise continuous and bounded, Aref,s ∈ R
n×n is Hurwitz,

s ∈ �, and Bref,s ∈ R
n×m, and assume there exist pairs

(Kx,s, Kr,s) ∈ R
n×m × R

m×m such that the matching
conditions

Aref,s = As + BsK
T
x,s, s ∈ �, (17)

Bref,s = BsK
T
r,s , (18)

are verified. In the following, we assume that the
reference dynamical model (16) is input-to-state stable.
This assumption is realistic since each linear, time-invariant,
dynamical system comprised in the switched reference
model (16) is input-to-state stable and hence, there exists a
dwell-time such that Eq. 16 is input-to-state stable [62].

Lastly, assume there exists a symmetric positive-definite
matrix P ∈ R

n×n that verifies the set of Lyapunov matrix
inequalities

AT
ref,sP + PAref,s < 0, s ∈ �, (19)

and consider the trajectory tracking error dynamics

ė(t) = Aref,σ (t)e(t) + Bσ(t)��T(t)�̃σ(t)(t, x(t)),

e(t0) = x0 − xref,0, t ≥ t0, (20)

and the adaptive law

˙̂
�(t) = −��̃σ(t)(t, x(t))eT(t)PBσ(t), �̂(t0) = �̂0, (21)

where �̂ : [t0, ∞) → R
(σ (n+m)+N)×m denotes the adaptive

gain, ��(t) � �̂(t) − �̃,

�̃s(t, x) �
[ I(s) ⊗ x
I(s) ⊗ r(t)
−�s(t, x)

]
, (s, t, x) ∈ � × [t0, ∞) × R

n, (22)

I(s) �
[
1{s∈�:s−1=0}(s), . . . , 1{s∈�:s−σ=0}(s)

]T
, (23)

�̃ �
[
KT

x,1, . . . , K
T
x,σ , KT

r,1, . . . , K
T
r,σ , �T

]T
, (24)

x(·) verifies (15) with u(t) = φ(�̂(t), �̃σ(t)(t, x(t))),

φ(�̂, �̃s) = �̂T�̃s,

(s, �̂, �̃s) ∈ � × R
(σ (n+m)+N)×m × R

σ(n+m)+N, (25)

denotes the control law, and � ∈ R
(σ (n+m)+N)×(σ (n+m)+N)

is symmetric and positive-definite, and denotes the adaptive
rate matrix.

Our goal is to prove that solutions of both (20) and
(21) are bounded uniformly in t0 ∈ [0, ∞) and σ(·) and
that solutions of Eq. 20 converge asymptotically to zero
uniformly in t0 and σ(·). Since both (20) and (21) are
discontinuous, multiple notions of solutions may be applied
[13]. In this paper, we consider two classes of absolutely
continuous [50, p. 127] generalized solutions of Eqs. 20 and
21, namely Carathéodory and Filippov solutions.

In the Carathéodory framework, it can be verified that
if x(·) denotes the solution of Eq. 15 with u(t) =
φ(�̂(t), �̃σ(t)), t ≥ t0, and xref(·) denotes the solution of
(16), then the solution e(·) of Eq. 20 is such that e(t) =
x(t) − xref(t), t ≥ t0 a.e.

However, a solution e(·) of Eq. 20 in the sense of Filippov
is not necessarily equivalent to the difference of a solution
x(·) of Eq. 15 with u(t) = φ(�̂(t), �̃s(t)), t ≥ t0, and a
solution xref(·) of Eq. 16. If x(t) = xref(t), t ≥ T a.e., for
some T ≥ t0, and e(t) = 0, then this equivalence can be
established for all t ≥ T a.e.; for details, see [49].

In the following, nd(t, t0) ∈ N denotes the number of dis-
continuities of σ(·) over the interval (t0, t), Tσ(t) � {τj ∈
[t0, t) : σ(·) is discontinuous at τj , j = 0, . . . , nd(t, t0)}
denotes the totally ordered set of switching times over
[t0, t), and we set t0 = τ0 ∈ Tσ(t) so that both Aref,σ (·)
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and Bref,σ (·) are constant between switching times, that
is, (Aref,σ (μ), Bref,σ (μ)) = (Aref,σ (τj ), Bref,σ (τj )) for all
μ ∈ [τj , τj+1) ∩ [t0, t) and for all j = 0, . . . , nd(t, t0),
where τj ∈ Tσ(t) and (Aref,σ (τj ), Bref,σ (τj )) =
limτ→0+(Aref,σ (τj +τ), Bref,σ (τj +τ)). For simplicity of

notation, we define T � limt→∞ Tσ(t).

3.2 Carathéodory framework

In this section, we address the model reference adaptive
control design problem posed in Section 3.1 by analyzing
Carathéodory solutions of the trajectory tracking error
dynamics (20) and the adaptive law (21) and assuming
that the switching signal σ(·) is piece-wise constant and
such that σ(t) = limτ→t+ σ(τ) for each τ ≥ t0. It is
worthwhile to note that the switched dynamical system
given by Eqs. 20 and 21 is continuous in t ∈ [τj−1, τj )

for all (j, τj−1, e, �̂) ∈ N × T × R
n × R

(σ (n+m)+N)×m

and locally Lipschitz continuous in (e, �̂) uniformly in t

for all t in compact subsets of [t0, ∞), and hence it follows
from Theorem 1.2 of [16] that there exists a unique pair
(e, �̂) : [t0, ∞) → R

n × R
(σ (n+m)+N)×m that verifies (20)

and (21) in the sense of Carathéodory.
The next theorem is the main result of this section

and proves that if the trajectory tracking error e(·)
and the adaptive gain matrix �̂(·) verify (20) and
(21), respectively, in the sense of Carathéodory, then
both the trajectory tracking error and the adaptive gain
matrix are uniformly bounded, and the closed-loop plant’s
trajectory asymptotically converges to the reference model’s
trajectory. To prove this result, it is worthwhile to recall the
following generalization of Barbalat’s lemma [27, Lemma
8.2] and that the dwell-time td � inf{|τj − τj−1| :
τj−1 ∈ T , j ∈ N} of the switching signal σ(·) captures
the length of the minimal interval between switching times
[36, p. 56].

Lemma 2 ([24]) Let h : [t0, ∞) → R be piece-wise
continuously differentiable and let {tk}∞k=1 ⊂ [t0, ∞) denote
the sequence of points of discontinuity of h(·). Suppose
that infk∈N |tk − tk−1| > 0 and that both h(·) and
ḣ(·) are bounded on [tk−1, tk) uniformly in k ∈ N. If
limt→∞

∫ t

0h(τ)dτ exists and is finite, then limt→∞ h(t) = 0
uniformly in k ∈ N.

Theorem 3 Consider the closed-loop trajectory tracking
error dynamics (20) and the adaptive law (21). Assume that
the matching conditions (17) and (18) are verified, td > 0,
and there exist symmetric positive-definite matrices P, Q ∈
R

n×n so that

AT
ref,sP + PAref,s < −Q. s ∈ �. (26)

Then, both the trajectory tracking error e(·) and the
adaptive gain matrix �̂(·) are bounded uniformly in both
t0 ∈ [0, ∞) and σ(·), and e(t) → 0 as t → ∞ uniformly in
both t0 and σ(·).

Proof Consider the common Lyapunov function candidate

V (t, e, ��) = eTPe + tr
(
��T�−1��

)
,

(t, e, ��) ∈ [t0, ∞) × R
n × R

(σ (n+m)+N)×m, (27)

and note that if there exist symmetric positive-definite
matrices P, Q ∈ R

n×n so that Eq. 26 is verified, then the
Lyapunov inequality (19) is verified. Next, it follows from
Eqs. 27 and 26 that

V̇ (t, e(t), ��(t))

≤ −αmin‖e(t)‖2 + 2eT(t)PBσ(t)��T(t)�̃σ(t)(t, x(t))

+2tr
(
��T(t)�−1 ˙̂

�(t)
)

= −αmin‖e(t)‖2
+2tr

(
��T(t)

[
�−1 ˙̂

�(t) + �̃σ(t)(t, x(t))eT(t)PBσ(t)

])

= −αmin‖e(t)‖2, t ≥ t0 a.e., (28)

along the trajectories of Eqs. 20 and 21, where αmin �
λmin(Q).

Since both V (·, ·, ·) and V̇ (·, ·, ·) do not explicitly depend
on t and σ(·) and V̇ (t, e(t), ��(t)), t ≥ t0, is a non-
increasing function of time, by proceeding as in Theorem
4.13 of [19] it can be proven that both e(·) and �̂(·) are
bounded on [τj−1, τj ) uniformly in j ∈ N for all τj ∈ T .

Next, since V (t, e, ��), (t, e, ��) ∈ [t0, ∞) × R
n ×

R
(σ (n+m)+N)×m, is positive-definite and V̇ (t, e(t), ��(t))

is non-positive definite, it follows from the monotone
convergence theorem [19, Th. 2.10] that there exists Ve ≥ 0
such that V (t, e(t), ��(t)) → Ve as t → ∞. Moreover,
ẋref(·) is bounded on [τj−1, τj ) uniformly in j ∈ N for all
τj−1 ∈ T since Aref,s , s ∈ �, is Hurwitz, � is bounded, and
r(·) is bounded. Furthermore, since � is bounded, it follows
from Eqs. 25 and 15 with u(t) = φ(�̂(t), �̃σ(t)(t)) that ẋ(·)
is bounded on [τj−1, τj ) uniformly in j ∈ N for all τj−1 ∈
T . Therefore, ė(·) is bounded on [τj−1, τj ) uniformly in
j ∈ N for all τj−1 ∈ T and V̈ (t, e(t), K̂(t), K̂g(t)) =
−2eT(t)Qė(t) is bounded on [τj−1, τj ) uniformly in j ∈ N

for all τj−1 ∈ T . Consequently, it follows from Lemma 2
that V̇ (t, e(t), K̂(t), K̂g(t)) → 0 as t → ∞ and hence, it
follows from (28) that e(t) → 0 as t → ∞ uniformly in
t0 ∈ [0, ∞) and σ(·), which concludes the proof.

Theorem 3 proves that if the matching conditions (17)
and (18) are verified, the dwell-time td of the switching
signal σ(·) is arbitrarily small, but non-zero, and there exists
a solution to the Lyapunov inequality (19), then both the
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trajectory tracking error e(·) and the adaptive gain matrix
�̂(·) are bounded and the trajectory of the closed-loop
plant (15) with u(t) = φ(�̂(t), �̃σ(t)), t ≥ t0, eventually
mimics the trajectory of the reference model (16), that is,
limt→∞ ‖e(t)‖ = limt→∞ ‖x(t) − xref(t)‖ = 0 uniformly
in both t0 ∈ [0, ∞) and σ(·).

3.3 Filippov Framework

In this section, we address the model reference adaptive
control design problem posed in Section 3.1 by analyzing
Filippov solutions of the trajectory tracking error dynamics
(20) and the adaptive law (21) and assuming that the
switching signal σ(·) is Lebesgue integrable and has
countably many points of discontinuity over the time
interval [t0, ∞). To this goal, define the vectorized adaptive
gain θ̂ (t) � vec(�̂(t)), t ≥ t0, where vec(·) denotes
the vector-stacking operator, and consider the vectorized
adaptive law

˙̂
θ(t) = −vec

(
��̃σ(t)(t, x(t))eT(t)PBσ(t)

)
,

θ̂ (t0) = vec(�̂0), t ≥ t0, (29)

which has been deduced from Eq. 21. Furthermore, let

y(t) �
[
eT(t), θ̂T(t)

]T
, t ≥ t0, and

f (t, y) �
[
Aref,σ (t)e + Bσ(t)��T�̃σ(t)(t, x(t))

−vec
(
��̃σ(t)(t, x(t))eTPBσ(t)

)
]

(t, y) ∈ [t0, ∞) × R
n+m(σ(n+m)+N), (30)

so that Eqs. 20 and 21 are equivalent to

ẏ(t) = f (t, y(t)), y(t0) =
[

x0 − xref,0

vec(�̂0)

]
, t ≥ t0. (31)

It is worthwhile to note that the nonlinear, discontinuous
dynamical system given by Eq. 31 is Lebesgue integrable
and essentially locally bounded uniformly in t ∈ [t0, ∞)

since �s(·, ·) is Lebesgue integrable, continuous in t ∈
[t0, ∞), and Lipschitz continuous in x ∈ D, uniformly
in t for all s ∈ �, and σ(·) is Lebesgue integrable and
bounded.

Theorem 4 Consider the closed-loop trajectory tracking
error dynamics (20) and the adaptive law (21). Assume that
the matching conditions (17) and (18) are verified and there
exist symmetric positive-definite matrices P, Q ∈ R

n×n

so that (26) is verified. Then, every maximal solution of
the Filippov regularization of Eqs. 20 and 21 is bounded
uniformly in both t0 ∈ [0, ∞) and σ(·) and such that
e(t) → 0 as t → ∞ uniformly in both t0 and σ(·).

Proof Consider the candidate common Lyapunov function

V (t, y) = eTPe + θ̃Tθ̃ ,

(t, y) ∈ [t0, ∞) × R
n+m(σ(n+m)+N), (32)

where θ̃ � vec
(
�− 1

2 ��
)
, and note that if there exists

Q ∈ R
n×n that is symmetric, positive-definite, and such

that Eq. 26 is verified, then the Lyapunov inequality (19) is
verified.

Since V (·, ·) is continuously differentiable, the Lyapunov
function candidate (32) is Lipschitz continuous and regular,

and it follows from Lemma 1 that V̇ (t, y(t)) ∈ V̇ (t, y(t)),
t ∈ [t0, ∞) a.e., where

V̇ (t, y) �
⋂

ξ∈∂V (t,y)

ξT
[
K[f ](t, y)

1

]
,

(t, y) ∈ [t0, ∞) × R
n+m(σ(n+m)+N), (33)

and f (·, ·) verifies (31). Furthermore, since V (·, ·) is
continuously differentiable and does not depend on t

explicitly, it holds that

V̇ (t, y)⊂ ∂V (t, y)

∂y
K [f ] (t, y)⊂2

[
eTP, θ̃T

]
K[f ] (t, y),

(t, y) ∈ [t0, ∞) × R
n+m(σ(n+m)+N), (34)

and since f (t, ·) is continuous for all t ∈ [t0, ∞)

and f (·, y) is continuous between switching times for
all y ∈ R

n+m(σ(n+m)+N), it follows from Theorem 1
of [44] that K [f ] (t, y) = {f (t, y)} for all (t, y) ∈([τj−1, τj ) ∩ [t0, t)

)×R
n+m(σ(n+m)+N), where τj ∈ T and

j ∈ N. Therefore, by proceeding as in the proof of Theorem
3, it holds that

V̇ (t, y(t)) ≤ −αmin‖e(t)‖, t ∈ [t0, ∞) a.e., (35)

where αmin = λmin(Q). Since V (·, ·) is positive-definite
and radially unbounded and W3(y) = αmin‖e‖ is a
nonnegative-definite function of its argument, it follows
from Theorem 2 that every maximal solution y(·) of the
Filippov regularization of Eq. 31 is bounded uniformly in
both t0 ∈ [t0, ∞) and σ(·) and such that limt→∞ e(t) = 0
uniformly in both t0 and σ(·).

Theorem 4 proves that applying the control law (25)
and the adaptive law (21) or, equivalently, Eqs. 25 and
29, both the trajectory tracking error e(·) and the adaptive
gain matrix �̂(·) are bounded, and limt→∞ ‖e(t)‖ = 0
uniformly in both t0 ∈ [0, ∞) and σ(·). Hence, it follows
from the definition of limit that given ε > 0, there exists
T ≥ t0 such that ‖e(t)‖ < ε for t ≥ T a.e.. Theorem 3
proved a similar result, assuming that the dwell-time is non-
zero. Theorem 4, instead, allows zero dwell-time. Moreover,
Theorem 3 guarantees the existence of a unique solution
of the trajectory tracking error and the adaptive gains
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dynamics, whereas Theorem 4 guarantees the existence, but
not the uniqueness, of a solution of Eqs. 20 and 21.

4 Illustrative Numerical Example

In this section, we provide a numerical example to
demonstrate the effectiveness of both the control law (25)
and the adaptive law (21) to guarantee that the trajectory
x(·) of the plant (15) with u(t) = φ(�̂(t), �̃σ(t)(t)), t ≥ t0,
eventually tracks the trajectory xref(·) of the reference model
(16). Specifically, we consider a delta-wing aircraft, whose
wings’ morphing mechanism is able to modify the vehicle’s
aerodynamic and geometric properties sufficiently fast to be
considered as instantaneous, and whose aerodynamic and
geometric coefficients are unknown. The roll dynamics of
this vehicle is captured by[

ϕ̇(t)

ṗ(t)

]
=
[

0 1
θ1,σ (t) θ2,σ (t)

] [
ϕ(t)

p(t)

]

+
[

0
θ3,σ (t)

] [
u(t) + �T�σ(t)(t, ϕ(t), p(t))

]
,

[
ϕ(0)
p(0)

]
=
[

ϕ0

p0

]
, t ≥ 0, (36)

where ϕ(·) denotes the roll angle, p(·) denotes the roll rate,
u(·) denotes the roll moment, θ1,s , θ2,s , θ3,s ∈ R capture
aerodynamic coefficients of the aircraft, s ∈ �, � = {1, 2},
θ1,s and θ2,s are unknown, � ∈ R

4 is unknown,

�s(t, ϕ, p)

=
[
1{s∈�:s−1=0}(s)�̄1(t, ϕ, p), 1{s∈�:s−2=0}(s)�̄T

2 (t, ϕ, p)
]T

,

(s, t, ϕ, p) ∈ � × [t0, ∞) × R × R,

denotes the regressor vector, and [33, pp. 285-291]

�̄1(t, ϕ, p) = tanhϕ,

�̄2(t, ϕ, p) =
[
|ϕ(t)|p(t), |p(t)|p(t), ϕ3(t)

]T ;
note that Eq. 36 is in the same form as Eq. 15 with n =
2, m = 1, t0 = 0, x = [ϕ, p]T, As =

[
0 1

θ1,s θ2,s

]
,

s ∈ �, σ = 2, and Bs =
[

0
θ3,s

]
. Additionally, we

consider the switched reference model (16) with xref(t) =
[ϕref(t), pref(t)]T, Aref,s =

[
0 1

−ks −cs

]
, s ∈ �, ks > 0,

cs > 0, Bref, s =
[
0
bs

]
, and bs ∈ R so that if σ(t) = 1, t ≥

0, then Eq. 16 captures a less responsive reference model,
and if σ(t) = 2, then Eq. 16 captures a more responsive
reference model. It is worthwhile to note that Aref,s , s ∈ �,
is in companion form and hence, there exists a symmetric
positive-definite matrix P ∈ R

2×2 that verifies (19) if and

only if the matrix product Aref,1Aref,2 does not have any
negative real eigenvalue [47].

Let θ1,1 = −9.15, θ2,1 = −4.6, θ3,1 = 1, θ1,2 = −0.018,
θ2,2 = 0.015, θ3,2 = 0.75, � = [1, −0.062, 1, 0.009]T,
k1 = 1, c1 = 3, b1 = 1, k2 = 150, c2 = 45, b2 = 150,

r(t) = 1

2
sin 2t , t ≥ 0, σ(t) = rpi

(
1
2 sin (ω(t)t) + 3

2

)
,

where rpi(·) denotes the rounding function to the nearest
integer,

ω(t) =
⎧⎨
⎩
0.5, t ∈ [0, 15) ∪ [25, ∞),

3(t − 15)

4(25 − t)
, t ∈ [15, 25),

� = 50I10, ϕ0 = 1, and p0 = 1; note that the dwell-
time converges to zero as t → 25 from the left. In
this case, spec(A1) = {−2.3000 − 1.9647j, −2.3000 +
1.9647j} and spec(A2) = {0.0075 − 0.1340j, 0.0075 +
0.1340j, }, which implies that the uncontrolled plant is
asymptotically stable for s = 1 and is unstable for
s = 2. Furthermore, spec(Aref,1Aref,2) = {−8.000 −
9.2736j, −8.000+ 9.2736j}, and Eq. 19 is verified by P =[
2.99 0.75
0.75 0.288

]
· 104.

Figure 1 shows plots of the aircraft’s roll angle and the
corresponding reference trajectory. The control law (25)
and the adaptive law (21) guarantee satisfactory trajectory
tracking despite uncertainties in the plant dynamics and
the initial conditions and despite the arbitrarily small
dwell-time over the interval [15, 25) s. Figure 2 shows a
plot of the roll moment needed to track the reference
trajectory. It is apparent that each switching is followed
by a sudden increase of the control input, and over the
time interval [15, 25) s, the control input is characterized
by high-frequency oscillations due to the rapid sequence of
switching times.

None of the control techniques for uncertain, switched,
nonlinear plants that we surveyed is suitable to regulate (36).
Therefore, to validate the usefulness of the adaptive law
(21), we considered the problem of applying the control law
(25) and the classical adaptive law

˙̂
�(t) = −��̃s(t, x(t))eT(t)PBs, s ∈ �,

�̂(t0) = �̂0, t ≥ t0, (37)

to regulate the aircraft’s roll dynamics. If s = 1 in both
(25) and (37), then the trajectory tracking error diverges.
Alternatively, if s = 2 in both (25) and (37), then the
aircraft is able to track the reference roll angle. However,
as shown in Fig. 3, applying (25) and (37) with s = 2,
the trajectory tracking error is consistently larger than the
trajectory tracking error obtained by applying the proposed
framework. Indeed, applying (25) and (21), the L2-norm
of the trajectory tracking error is equal to 0.049N, and
applying (25) and (37) with s = 2, the L2-norm of the



J Intell Robot Syst

Fig. 1 Plot of the aircraft’s roll
angle ϕ(·) and reference roll
angle ϕref(·). The vertical lines
mark the switching times.
Despite the arbitrarily small
dwell-time and the uncertainties
in both the plant dynamics and
the initial conditions, the
aircraft’s roll angle tracks
closely the reference roll angle
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Fig. 2 Plot of control input
obtained applying the control
law (25) and the proposed
adaptive law (21). Both the
magnitude an the frequency of
the control input increase with
the frequency of the switching
signal
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Fig. 3 Plot of the trajectory
tracking error norm obtained by
applying the control law (25)
and the proposed adaptive law
(21), namely ‖e(·)‖, and plot of
the trajectory tracking error
norm obtained by applying the
control law (25) and the
classical adaptive law (37) with
s = 2, namely ‖eclassical(·)‖.
Applying (25) and (21), the
trajectory tracking error is
consistently smaller
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Fig. 4 Plot of control input
obtained applying the control
law (25) and the classical
adaptive law (37) with s = 2.
By comparing this plot with the
plot in Fig. 2, it is apparent that
applying (25) and (37) with
s = 2, the control effort is three
orders of magnitude larger than
the control effort needed to
apply (25) and (21)
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trajectory tracking error is equal to 0.209N. Figure 4 shows
the control input obtained applying (25) and (37) and s =
2. By comparing Figs. 2 and 4, it appears that applying
(25) and (37) with s = 2, the control effort is three
orders of magnitude larger than the control effort needed
to apply (25) and (21); indeed, the L∞-norm of the control
input obtained by applying (25) and (37) with s = 2 is
415, 559.07N, whereas the L∞-norm of the control input
obtained applying (25) with the proposed adaptive law (21)
is 171.75N. Lastly, we remark that, employing (25) and
(21), the computational time is approximately 10.4 times
shorter than employing (25) and (37) with s = 2.

5 Flight Tests

5.1 Problem Description

In order to validate the proposed model reference adaptive
control framework for unknown switched nonlinear plants,
we performed flight tests involving an aerial robot tasked

with autonomously mounting a camera to a vertical surface.
This aerial robot comprises a chassis, which is modeled
as a rigid body, four propellers, whose spin axes can be
tilted independently, a robotic arm, and a grasper, which
comprises a suction cup mounted at the extremity of the
robotic arm; for details, see Fig. 5. The camera is held by
the grasper and is covered by one of the two sides of a linear
fabric strip fastener. The point on the vertical surface where
the camera must be installed is covered by the other side of
the fabric strip fastener. After having exerted some normal
force against the vertical surface and having engaged the
fabric strip fastener, the suction cup is released and the aerial
robot flies away from the vertical surface. A video of one of
these flight tests can be found at [2].

5.2 Dynamical Modeling

To uniquely identify the position and orientation of the
aerial robot in space, we consider two reference frames,
namely the inertial reference frame I � {O; X, Y, Z}
centered in O ∈ R

3 and with orthonormal axes

Fig. 5 Aerial robot installing a
camera on a vertical surface.
The camera is held by the
grasper and is covered by one of
the two sides of a linear fabric
strip fastener. The vertical
surface is partly covered by the
other side of the fabric strip
fastener so that, after having
exerted some pressure against
the vertical surface, the suction
cup is released, and the aerial
robot flies away
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X, Y, Z ∈ R
3 and the body reference frame J(·) �

{A(·); x(·), y(·), z(·)} centered at the extremity of the arm
A : [t0, ∞) → R

3 and with orthonormal axes x, y, z :
[t0, ∞) → R

3. If a vector a ∈ R
3 is expressed in the

reference frame I, then it is denoted by aI; alternatively, if
a vector is expressed in J(·), then no superscript is used.
The reference frame I is set so that the X axis is normal
to the vertical surface and the force due to the gravitational
acceleration is given by F I

g = −mgZ, where m > 0
denotes the mass of the aerial robot and g > 0 denotes the
gravitational acceleration. The reference frame J(·) is set
so that the propellers’ arms are aligned to the y(·) axis; for
details, see Fig. 6.

The position of the reference point A(·) with respect to
O is denoted by rIA : [t0, ∞) → R

3 and the velocity of
A(·) with respect to the reference frame I is denoted by
vIA : [t0, ∞) → R

3. Using a 3-2-1 rotation sequence, the
orientation of the body reference frame J(·) with respect to
the inertial reference frame I is captured by the roll angle φ :
[t0, ∞) → [0, 2π), the pitch angle θ : [t0, ∞) → (−π

2 , π
2

)
,

and the yaw angle ψ : [t0, ∞) → [0, 2π) [31, pp. 11].
The vector of independent generalized coordinates

q(t) �
[(

rIA(t)
)T

, φ(t), θ(t), ψ(t)

]T
∈ D, t ≥ t0, (38)

captures the position and orientation of J(·) with respect to
I, where D � R

3 × (−π
2 , π

2

) × (−π
2 , π

2

) × [0, 2π). The
kinematic equations of the aerial robot are given by

q̇(t) =
[

vIA(t)

�(q(t))ω(q(t), q̇(t))

]
, q(t0) = q0, t ≥ t0, (39)

where ω : D × R
6 → R

3 denotes the angular velocity of
the reference frame J(·) with respect to I, and [31, Th. 1.7]

�(q) �

⎡
⎣1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

⎤
⎦ , q ∈ D;

it is worthwhile to recall that �(q) is invertible, since θ ∈
(−π

2 , π
2 ) [31, pp. 18-19].

After the fabric strip fastener has been engaged and
before the suction cup is released, the point of contact
between the robotic arm and the vertical surface is modeled
as a cylindrical hinge since the aircraft can only rotate about
the y(·) axis. Furthermore, the translation of the reference
point A(·), the aircraft’s roll angle, and the aircraft’s yaw
angle are impeded. Therefore, while the aerial robot is
in contact with the vertical surface, the plant dynamics
is in partial-state equilibrium [19, Def. 4.1]. Furthermore,
the aerial robot’s dynamics comprises two models, that
is, � = {1, 2}. Specifically, the first model captures the
aerial robot’s free flight dynamics, and the state vector
comprises twelve components, that is, the components of
[qT(·), q̇T(·)]T. The second dynamical model captures the
aerial robot’s pitch dynamics while in contact with the
vertical surface, the state vector comprises two components,
that is, [θ(·), θ̇ (·)]T, and the remaining components of
[qT(·), q̇T(·)]T are at equilibrium. By proceeding as in [3],
the translational and rotational dynamic equations of the
aerial robot are given by

Hσ(t)M(q(t))

[
v̇IA(t)

ω̇(q(t), q̇(t))

]

= Hσ(t)

([
fdyn, tran(t, q(t), q̇(t))

fdyn, rot(t, q(t), q̇(t))

]
+ G(q(t))u(t)

)
,

[
v
I,T
A (t0), ω

T(t0)
]T =

[
v
I,T
A,0, ω

T
0

]T
, t ≥ t0, (40)

where

Hs �
[
1{s∈�:s−1=0}(s)I3 03×3

03×3 Irot(s)

]
, s ∈ �, (41)

Irot(s) � diag
(
1{s∈�:s−1=0}(s), 1, 1{s∈�:s−1=0}(s)

)
,

M(q) �
[

mI3 −mR(q)r×
C

mr×
C RT(q) I

]
, q ∈ D, (42)

Fig. 6 Schematic representation
of a simplified unmanned aerial
manipulator system exerting a
normal force against a vertical
surface
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denotes the generalized mass matrix, rC ∈ R
3 denotes

the position of center of mass of the controlled mechanical
system with respect to the reference point A(·), the
symmetric, positive-definite matrix I ∈ R

3×3 denotes
the inertia matrix of the aerial robot with respect to the
reference point A(·),

fdyn, tran(t, q, q̇) � F I

g − mR(q)ω×(q, q̇)ω×(q, q̇)rC, (43)

fdyn, rot(t, q, q̇) � −ω×(q, q̇)Iω(q, q̇)

−
4∑

i=1

[
IPi

(t)ω̇Pi
(t) + ω×

Pi
(t)IPi

(t)ωPi
(t)
]

−ω×(q, q̇)

4∑
i=1

IPi
(t)ωPi

(t) + r×
C RT(q)F I

g , (44)

G(q) �
[
R(q)

[
e1,3 e3,3

]
03×3

03×2 I3

]
, (45)

u � [u5, u1, . . . , u4]T ∈ R
5 denotes the control input,

u5, u1 : [t0, ∞) → R, denote the components of the forces
produced by the propellers along the x(·) and z(·) axes,
respectively, and [u2, u3, u4]T : [t0, ∞) → R

3 denotes the
moment of the force produced by the propellers.

The inertia matrix of the ith propeller IPi
(·), i =

1, . . . , 4, is a function of time since the propellers’ tilt angle
may vary [3]. The first component of the control vector
u(·) is denoted by u5(·) for consistency with the notation
concerning classical quadcopters, for which u : [t0, ∞) →
R
4 and u5(t) ≡ 0, t ≥ t0; for details, see [32].
If σ(t) = 1, t ∈ ⋃∞

k=0[τ2k, τ2k+1), then Hσ(t) = I6,
and Eq. 40 captures the aircraft’s free flight dynamics.
Alternatively, if σ(t) = 2, t ∈ ⋃∞

j=0[τ2j+1, τ2(j+1)), then

Hσ(t) =

⎡
⎢⎢⎣
03×3 03×3

03×3

⎡
⎣0 0 0
0 1 0
0 0 0

⎤
⎦

⎤
⎥⎥⎦, and Eq. 40 captures the pitch

dynamics of the aerial robot while connected to the vertical
surface. An equivalent formulation of the aerial robot’s
dynamics may have been deduced by setting Hσ(t) = I6,
t ≥ t0, and introducing the impulsive reaction forces
and moments imposed by the vertical surface in the aerial
robot’s free flight dynamic equations.

5.3 Control Strategy

Let qref(t) �
[(

rIref(t)
)T

, φref(t), θref(t), ψref(t)
]T ∈ D, t ≥

t0, denote the piece-wise twice continuously differentiable
reference vector of independent generalized coordinates,
where rIref(·) captures the user-defined reference trajectory
for the point A(·), φref(·) captures the reference roll
angle, θref(·) captures the user-defined reference pitch
angle, and ψref(·) captures the user-defined reference yaw
angle. We design qref(·) so that rIref(t) = rIwall, t ∈

⋃∞
j=0[τ2j+1, τ2(j+1)), where rIwall denotes the point on

the vertical surface where the camera must be installed.
Furthermore, we set θref(t) ≡ 0, t ≥ t0, and ψref(t) ≡
0 so that the robotic arm is orthogonal to the vertical
surface upon impact. The aerial robot considered in this
research is underactuated since it is characterized by six
degrees of freedom, namely the components of q(·), and five
control inputs, namely the components of u(·). Therefore,
it is impossible to define qref(·) arbitrarily. For these aerial
vehicles, φref(·) is deduced so that the desired displacement
of the reference point A(·) along the direction Y of the
reference frame I can be achieved [3]. In this paper, we set

eT2,3r
I

ref(t) = 0, t ≥ t0, so that if
∣∣∣eT2,3

(
rIA(t) − rIref(t)

)∣∣∣ = 0,

t ≥ t0, then φref(t) = 0.
Next, consider the feedback-linearizing control law

βs(t, q, qref, w)

� h

(
−
[
fdyn, tran(t, q, q̇)

fdyn, rot(t, q, q̇)

]
+ M(q)

[
1303×3

03×3�
−1(q)

]

·
[
q̈ref−

[
03×1

�̇(q)ω(q, q̇)

]
−[KP,s , KD,s]

[
q−qref
q̇−q̇ref

]
+w

])
,

(s, t, q, qref, w) ∈ � × [t0, ∞) × D × D × R
6, (46)

where KP,s , KD,s ∈ R
6 are user-defined, symmetric, and

positive-definite gain matrices that define a proportional-
derivative baseline controller, h : Rn → R

n is defined so
that eTj,6h(x) = xj , j ∈ {1, 2, 4, 5, 6}, and eT3,6h(x) =
μκ(x3), and μκ : R → R is defined so that μκ(α) =
κ signα, for |α| ≤ κ and κ > 0 user-defined and
arbitrarily small, and μκ(α) = α, for |α| > κ . If u(t) =
βσ(t)(t, q(t), qref(t), w(t)), t ≥ t0, then the trajectory
tracking error dynamics is given by the switched dynamical
model

ė(t) = Aref,σ (t)e(t) + B
[
w(t)+�̃T�̃σ(t)(t, q(t), q̇(t))

]
,

e(t0) =
[
q(t0) − qref(t0)

q̇(t0) − q̇ref(t0)

]
, t ≥ t0, (47)

where e(t) � q(t) − qref(t), denotes the trajectory tracking

error, Aref,s =
[
06×6 I6

−KP,s −KD,s

]
, s ∈ �, B =

[
06×6

I6

]
,

�̃ ∈ R
39×6 is unknown, and

�̃s (t, q, q̇) �
[
1{s∈�:s−1=0}(s)�

T
1 (t, q, q̇), 1{s∈�:s−2=0}(s)�2(t, q, q̇),

]T
,

(s, t, q, q̇) ∈ � × [t0, ∞) × D × R
6, (48)

�1(t, q, q̇) =
[
−mWT

M(R(q)ω×(q, q̇)ω×(q, q̇)),

−WT
M

(
ω×(q, q̇)MW (ω(q, q̇))

)
, F T

g (q)
]T

, (49)

�2(t, q, q̇) = eT3,3Fg(q), (50)

WM(A) �
n∑

i=1

[ei,m ⊗ (Aei,m)], A ∈ R
n×m, (51)

MW (b, n) �
(
bT ⊗ In

)
, (b, n) ∈ R

m × N, b ∈ R
n. (52)
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The regressor vector �̃s(t, q, q̇), (s, t, q, q̇) ∈ � ×
[t0, ∞)×D×R

6, has been constructed to capture the effect
of uncertainties on the location of the aerial robot’s center
of mass on the right-hand side of the dynamic (40). The
function h(·) in Eq. 46 guarantees the controllability of the
closed-loop plant dynamics at all times [3].

Let w(t) = φ(�̂(t), �̃σ(t)(t, q(t), q̇(t))), t ≥ t0, where
the feedback control law φ(·, ·) is given by Eq. 25 and �̂(·)
verifies the adaptive law (21). In this case, the trajectory
tracking error dynamics (47) is in the same form as Eq. 20

with n = 12, m = 6, x = [
qT, q̇T

]T
, and Bs = B, s ∈

�. Therefore, it follows from Theorem 3 or, alternatively,
from Theorem 4 that the proposed model reference adaptive
control law (25) and the proposed adaptive law (21) can be
employed to guarantee satisfactory trajectory tracking at all
times.

5.4 Flight Tests Setup

The aerial robot employed to test the proposed model ref-
erence adaptive control framework for switched dynamical
systems is custom designed. The chassis is made of carbon
fiber rods and the propellers are actuated by Dynamixel AX-
18A servo motors, which guarantee ±1 deg precision and
allow to measure their displacement. To guarantee success-
ful grasping and placement of the camera sensor and allow
the user to release the camera at a desired time instant, a
gripper based on an active, self-sealing suction cup has been
employed.

The proposed control law has been coded in the C++
programming language and implemented on an ODroid
XU4 companion computer, which integrates both (21) and
(20) and evaluates the control law (25) at a frequency

of approximately 250Hz. Once the control input u(·) has
been determined, the companion computer calculates the
tilt angle and thrust force for each propeller to realize the
desired control input according to the algorithm outlined
in [3]. The servo actuators that regulate the propellers’ tilt
angles are controlled directly by the companion computer.
Each propeller’s desired thrust force is transmitted from the
companion computer to a Pixhawk 2 flight controller over
a dedicated serial line, and the flight controller coordinates
each propeller so that the desired thrust force is realized.
The flight controller also embeds an inertial measurement
unit and an extended Kalman filter to estimate the vehicle’s
rotational position and velocities. Flight tests have been
performed indoors, and the aerial robot’s position and
velocity are deduced by a Vicon motion capture system and
transmitted over WiFi to the companion computer.

5.5 Flight tests results

The feedback-linearizing control law (46) and the adaptive
law (21) have been coded assuming that the aerial robot’s
mass is m = 2.06kg, which has been deduced using a
precision scale, and its inertia matrix is

I =
⎡
⎣ 1.97 −0.0732 −0.0182

−0.0732 1.37 −0.0162
−0.0182 −0.0162 10.8

⎤
⎦ · 10−3kg · m2,

which has been deduced using a computer aided design
(CAD) model. Furthermore, the ith propeller’s inertia
matrix IPi

(·), i = 1, . . . , 4, has been computed by modeling
each propeller as a thin disk of mass 0.0039 kg and radius
0.1145m. Lastly, we set KP,1 = diag(1, 1, 2, 0.4, 0.5, 0.4),

Fig. 7 Position of the aerial robot during a sensor placement mission.
Both the feedback-linearizing control law (46) and the adaptive law
(21) have been tuned without accounting for the camera. Therefore,
during the adaptive gains’ transient dynamics over the time interval

[0, 7.2] s, the trajectory tracking error is sensibly larger than over the
time interval [7.2, 20.3] s. To lead the aerial robot away from the verti-
cal surface as soon as possible and overcome the force exerted by the
suction cup, the reference trajectory is discontinuous at t = 20.3 s
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Fig. 8 Pitch angle of the aerial
robot. The proportional-
derivative baseline controller has
been tuned without accounting
for the camera. Therefore, the
aerial robot experiences a pitch
moment due to the gravitational
force, which is counteracted by
the adaptive control law

KD,1 = diag(0.5, 0.5, 1, 0.1, 0.25, 0.1), KP,2 = 0.5I6, and
KD,2 = 0.25I6; the adaptive rate matrix � and the matrices
P and Q that verify the Lyapunov inequality (26) have been
omitted for brevity. The inertial parameters of the camera
have been neglected while tuning the proposed controller.

Figure 7 shows the components of both the actual
trajectory rIA(·) and the reference trajectory rIref(·) of
the point A(·). The aircraft takes off at t = 0 s and
is commanded to reach an altitude of 2.15m over the
time interval [0, 5] s. Successively, the reference trajectory
requires the aerial robot to hover for two seconds. At t =
7 s, the reference trajectory leads the reference point A(·)
toward the wall at a forward velocity of 0.33m/s. The wall
is impacted at t = 15.5 s and the propellers’ tilt angles are
held constant over the time interval [15.5, 20.3] s to exert
sufficient horizontal force to engage the fabric strip fastener.
At t = 20.3 s, the suction cup’s micro-pump is deactivated
and the aerial robot follows its reference trajectory moving
away from the vertical surface. The reference trajectory is
discontinuous at t = 20.3 s to lead the aerial robot away
from the vertical surface as soon as possible and overcome
the residual force exerted by the suction cup. Therefore, in
this flight test t0 = τ0 = 0 s, τ1 = 15.5 s, and τ2 = 20.3 s.
Although t0 and τ2 have been set a priori, τ1 could be
only estimated over the course of the flight test, which
provided an additional challenge for the proposed control
architecture.

Over the time interval [0, 15.5) s, the L∞-norm and
the L2-norm of the trajectory tracking error are 0.4820m
and 0.1904m/s, respectively. Over the time interval
[15.5, 20.3)m, the L∞-norm and the L2-norm of the
trajectory tracking error are 0.0412m and 0.0226m/s,
respectively. Finally, over the time interval [20.3, 25] s,
the L∞-norm and the L2-norm of the trajectory tracking
error are 1.4270m and 0.4054m/s, respectively. The target
position rIwall = [2.15, 0, 2.15]T m is reached with 0.01m
error at t = τ1. The proposed control architecture has been
tuned without accounting for the camera, which lead to

larger initial errors in the trajectory tracking error along both
the X axis and the Z axis, which are compensated over the
time interval [0, 7.2] s. The discontinuity in the reference
trajectory qref(·) lead to a large trajectory tracking error,
which is compensated over the time interval [20.3, 25] s.

Figure 8 shows the aerial robot’s pitch angle. Over
the time interval [0, 15.5) s, the L∞-norm and the L2-
norm of the pitch tracking error are 0.0993 and 0.1042 s−1,
respectively. Over the time interval [15.5, 20.3) s, the L∞-
norm and the L2-norm of the pitch tracking error are 0.0430
and 0.0177 s−1, respectively. Finally, over the time interval
[20.3, 25] s, the L∞-norm and the L2-norm of the pitch
tracking error are 0.0423 and 0.0398 s−1, respectively. Since
the proposed control architecture has been tuned without
accounting for the payload, the aerial robot experiences a
positive pitch angle over the time interval [0, 15.5] s. The
reaction force produced by disengaging the suction cup
from the wall produced a negative moment and hence, a
negative pitch angle over the time interval [20.3, 25] s.

6 Conclusion

This paper presented a model reference adaptive control
framework for unknown nonlinear switched plants, whose
trajectory of a user-defined linear switched reference model.
For the first time, the effectiveness of a model reference
adaptive control law for unknown nonlinear switched plants
is proven by analyzing both Carathéodory and Filippov
solutions. The effectiveness of the proposed results have
been verified both numerically and by means of flight tests.
The proposed numerical simulation involves the design of
an adaptive control law for a reconfigurable delta-wing
aircraft, whose aerodynamic and geometric coefficients
vary instantly and are unknown. The proposed flight tests
involve the design of a control law for an aerial robot tasked
with installing a camera of unknown inertial properties at a
user-defined point on a vertical surface.
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